AHD3253

Invoice: AH10870

Ray Tackaberry Adobe Springs Water 50 N. Salado Avenue, Unit 1417 Patterson, CA 95363

RE: Report for AHD3253 Title 21

Dear Ray Tackaberry,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 4/23/2024. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2016 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

This certificate of analysis shall not be reproduced except in full, without written approval of the laboratory.

If additional clarification of any information is required, please contact your Project Manager, Sarah K. Guenther, at 559-497-2888.

Thank you again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Sarah K. Guenther, Senior Project Manager

Sarsh Guerthe

Accredited in Accordance with NELAP ORELAP #4021

Case Narrative

Project and Report Details Invoice Details

Client:Adobe Springs WaterInvoice To: Adobe Springs WaterReport To:Ray TackaberryInvoice Attn: Ray Tackaberry

Project #: Title 21

Received: 4/23/2024 - 12:00 **Report Due:** 5/07/2024

Sample Receipt Conditions

Cooler: Default Cooler Containers Intact

Temperature on Receipt °C: 7.5

COC/Labels Agree
Received On Blue Ice

Sample(s) arrived at lab on same day sampled. Sample(s) were received in temperature range.

Project PO#: -

Initial receipt at BSK-FAL

Detailed Narrative

Chain of Custody Notes

Date: 04/24/2024 Initials: SKG

Note: EPA 524 analysis cancelled due to the presence of large air bubbles in all the sample VOAs.

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

BS Blank spike recoveries did not meet acceptance limits.

BS1.0 Blank spike recovery for this analyte was above upper control limit; no material impact on reported result as sample is ND

for this parameter.

MS1.0 Matrix spike recoveries exceed control limits.

MS1.2 Matrix spike recovery exceeds lower control limit. Reported results for parent matrix should be considered estimated due

to matrix interferences.

MS1.4 Matrix spike recovery data unreliable due to significant parent sample concentration relative to fortification level (>4x).

Sample ID: AHD3253-01
Sampled By: Ray Tackaberry
Sample Description: Spring Water

Sample Date - Time: 04/23/2024 - 08:00

Matrix: Water Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Amalista	Method	Decult	DI	Huita	RL	Botok	Drawarad	Analyzad	Ovel
Analyte		Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	400	3.0	mg/L	1		04/29/24	04/29/24	
Bicarbonate as CaCO3	SM 2320B	380	3.0	mg/L	1		04/29/24	04/29/24	
Carbonate as CaCO3	SM 2320B	22	3.0	mg/L	1		04/29/24	04/29/24	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	AHD1796	04/29/24	04/29/24	
Bromate	EPA 317.0	ND	1.0	ug/L	1	AHD1809	04/30/24	04/30/24	
Bromide	EPA 300.0	0.023	0.010	mg/L	1	AHD1729	04/26/24	04/26/24	
Dichloramine (1)	SM 4500-CI F	ND	0.10	mg/L	1	AHD1473	04/23/24 16:57	04/23/24	
Monochloramine (1)	SM 4500-CI F	ND	0.10	mg/L	1	AHD1473	04/23/24 16:57	04/23/24	
Chloride	EPA 300.0	7.2	1.0	mg/L	1	AHD1470	04/23/24	04/23/24	
Chlorine, Free Residual (1)	SM 4500-CI F	ND	0.10	mg/L	1	AHD1473	04/23/24 16:57	04/23/24	
Chlorine, Total Residual (1)	SM 4500-CI F	ND	0.10	mg/L	1	AHD1473	04/23/24 16:57	04/23/24	
Chlorite	EPA 300.1	ND	0.0050	mg/L	1	AHD1805	04/30/24	04/30/24	
Surrogate: Dichloroacetate	EPA 300.1	102 %	Acceptab	le range: 90-	115 %				
Color, Apparent	SM 2120B	ND	5.0	CU	1	AHD1501	04/23/24 18:07	04/23/24	
Color pH (1)	SM 4500-H+ B	8.7		pH Units	1	AHD1501	04/23/24	04/23/24	
Cyanide (total)	SM 4500-CN E	ND	5.0	ug/L	1	AHD1724	04/26/24	04/26/24	
Conductivity @ 25C	SM 2510B	730	1.0	umhos/cm	1	AHD1796	04/29/24	04/29/24	
Fluoride	EPA 300.0	ND	0.10	mg/L	1	AHD1470	04/23/24	04/23/24	
Langelier Index	SM 2330B	0.095				AHE0013	05/01/24	05/01/24	
MBAS, Calculated as LAS, mol wt 340	SM 5540C	ND	0.050	mg/L	1	AHD1500	04/23/24 18:51	04/24/24	
Nitrate + Nitrite as N	EPA 300.0	0.54	0.23	mg/L	1	AHD1470	04/23/24 17:44	04/23/24	
Nitrate as N	EPA 300.0	0.54	0.23	mg/L	1	AHD1470	04/23/24 17:44	04/23/24	
Nitrite as N	EPA 300.0	ND	0.050	mg/L	1	AHD1470	04/23/24 17:44	04/23/24	
Threshold Odor	SM 2150B	ND	1.0	T.O.N.	1	AHD1498	04/23/24 17:45	04/23/24	
pH (1)	SM 4500-H+ B	8.3	0.0	pH Units	1	AHD1796	04/29/24 19:21	04/29/24	
pH Temperature in °C		18.4							
Sulfate as SO4	EPA 300.0	36	1.0	mg/L	1	AHD1470	04/23/24	04/23/24	
Total Dissolved Solids	SM 2540C	470	5.0	mg/L	1	AHD1552	04/24/24	04/24/24	
Turbidity	SM 2130B	0.13	0.10	NTU	1	AHD1501	04/23/24 18:21	04/23/24	
-									

Metals

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Aluminum	EPA 200.7	ND	50	ug/L	1	AHD1657	04/25/24	04/29/24	
Antimony	EPA 200.8	ND	2.0	ug/L	1	AHD1657	04/25/24	05/01/24	
Arsenic	EPA 200.8	ND	2.0	ug/L	1	AHD1657	04/25/24	05/01/24	
Barium	EPA 200.7	ND	50	ug/L	1	AHD1657	04/25/24	04/29/24	
Beryllium	EPA 200.8	ND	1.0	ug/L	1	AHD1657	04/25/24	05/01/24	
Cadmium	EPA 200.8	ND	1.0	ug/L	1	AHD1657	04/25/24	05/01/24	
Calcium	EPA 200.7	6.8	0.10	mg/L	1	AHD1657	04/25/24	04/29/24	
Chromium	EPA 200.8	ND	10	ug/L	1	AHD1657	04/25/24	05/01/24	
Copper	EPA 200.8	ND	5.0	ug/L	1	AHD1657	04/25/24	05/01/24	
Iron	EPA 200.7	ND	30	ug/L	1	AHD1657	04/25/24	04/29/24	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Title 21

Certificate of Analysis

Sample ID: AHD3253-01 **Sample Date - Time:** 04/23/2024 - 08:00

Sampled By:Ray TackaberryMatrix:WaterSample Description:Spring WaterSample Type:Grab

Metals

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Lead	EPA 200.8	ND	1.0	ug/L	1	AHD1657	04/25/24	05/01/24	
Magnesium	EPA 200.7	97	0.10	mg/L	1	AHD1657	04/25/24	04/29/24	MS1.4
Manganese	EPA 200.7	ND	10	ug/L	1	AHD1657	04/25/24	04/29/24	
Nickel	EPA 200.8	ND	10	ug/L	1	AHD1657	04/25/24	05/01/24	
Potassium	EPA 200.7	ND	2.0	mg/L	1	AHD1657	04/25/24	04/29/24	
Selenium	EPA 200.8	ND	2.0	ug/L	1	AHD1657	04/25/24	05/02/24	
Silver	EPA 200.8	ND	10	ug/L	1	AHD1657	04/25/24	05/01/24	
Sodium	EPA 200.7	9.7	1.0	mg/L	1	AHD1657	04/25/24	04/29/24	
Thallium	EPA 200.8	ND	1.0	ug/L	1	AHD1657	04/25/24	05/01/24	
Hardness as CaCO3	SM 2340B	420	0.41	mg/L					
Uranium	EPA 200.8	ND	1.0	ug/L	1	AHD1657	04/25/24	05/01/24	
Zinc	EPA 200.8	ND	50	ug/L	1	AHD1657	04/25/24	05/01/24	

Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
EDB and DBCP by GC-ECD								
Ethylene Dibromide (EDB)	EPA 504.1	ND	0.020	ug/L	1	AHD1779	04/29/24	04/29/24
Dibromochloropropane (DBCP)	EPA 504.1	ND	0.010	ug/L	1	AHD1779	04/29/24	04/29/24
Surrogate: 1-Br-2-Nitrobenzene	EPA 504.1	96 %	Acceptable	range: 70	-130 %			
Organohalide Pesticides and Po	CBs by GC-ECD							
Aldrin	EPA 505	ND	0.075	ug/L	1	AHD1779	04/29/24	04/29/24
Chlordane (Technical)	EPA 505	ND	0.10	ug/L	1	AHD1779	04/29/24	04/29/24
Dieldrin	EPA 505	ND	0.020	ug/L	1	AHD1779	04/29/24	04/29/24
Endrin	EPA 505	ND	0.10	ug/L	1	AHD1779	04/29/24	04/29/24
Heptachlor	EPA 505	ND	0.010	ug/L	1	AHD1779	04/29/24	04/29/24
Heptachlor Epoxide	EPA 505	ND	0.010	ug/L	1	AHD1779	04/29/24	04/29/24
Hexachlorobenzene	EPA 505	ND	0.50	ug/L	1	AHD1779	04/29/24	04/29/24
Hexachlorocyclopentadiene	EPA 505	ND	1.0	ug/L	1	AHD1779	04/29/24	04/29/24
Lindane	EPA 505	ND	0.20	ug/L	1	AHD1779	04/29/24	04/29/24
Methoxychlor	EPA 505	ND	10	ug/L	1	AHD1779	04/29/24	04/29/24
PCB Aroclor Screen	EPA 505	ND	0.50	ug/L	1	AHD1779	04/29/24	04/29/24
Toxaphene	EPA 505	ND	1.0	ug/L	1	AHD1779	04/29/24	04/29/24
Surrogate: 1-Br-2-Nitrobenzene	EPA 505	96 %	Acceptable	range: 70	-130 %			
Chlorinated Acid Herbicides by	GC-ECD							
2,4,5-T	EPA 515.4	ND	1.0	ug/L	1	AHD1614	04/25/24	04/25/24
2,4,5-TP (Silvex)	EPA 515.4	ND	1.0	ug/L	1	AHD1614	04/25/24	04/25/24
2,4-D	EPA 515.4	ND	10	ug/L	1	AHD1614	04/25/24	04/25/24
Bentazon	EPA 515.4	ND	2.0	ug/L	1	AHD1614	04/25/24	04/25/24
Dalapon	EPA 515.4	ND	10	ug/L	1	AHD1614	04/25/24	04/25/24
Dicamba	EPA 515.4	ND	1.5	ug/L	1	AHD1614	04/25/24	04/25/24
Dinoseb	EPA 515.4	ND	2.0	ug/L	1	AHD1614	04/25/24	04/25/24
Pentachlorophenol	EPA 515.4	ND	0.20	ug/L	1	AHD1614	04/25/24	04/25/24
Picloram	EPA 515.4	ND	1.0	ug/L	1	AHD1614	04/25/24	04/25/24

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Title 21

Title 21

Certificate of Analysis

Sample ID: AHD3253-01
Sampled By: Ray Tackaberry
Sample Description: Spring Water

Sample Date - Time: 04/23/2024 - 08:00

Matrix: Water Sample Type: Grab

Organics

					DI -				
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Surrogate: DCPAA	EPA 515.4	100 %	Acceptable	range:	70-130 %				
Semi-Volatile Organics by GC-N	<u> 18</u>								
Alachlor	EPA 525.3	ND	1.0	ug/L	1	AHE0091	05/01/24	05/03/24	
Atrazine	EPA 525.3	ND	0.50	ug/L	1	AHE0091	05/01/24	05/03/24	
Benzo(a)pyrene	EPA 525.3	ND	0.10	ug/L	1	AHE0091	05/01/24	05/03/24	
Bis(2-ethylhexyl) adipate	EPA 525.3	ND	5.0	ug/L	1	AHE0091	05/01/24	05/03/24	
Bis(2-ethylhexyl) phthalate	EPA 525.3	ND	3.0	ug/L	1	AHE0091	05/01/24	05/03/24	
Bromacil	EPA 525.3	ND	10	ug/L	1	AHE0091	05/01/24	05/03/24	BS1.0
Butachlor	EPA 525.3	ND	0.38	ug/L	1	AHE0091	05/01/24	05/03/24	BS1.0
Diazinon	EPA 525.3	ND	0.25	ug/L	1	AHE0091	05/01/24	05/03/24	
Dimethoate	EPA 525.3	ND	10	ug/L	1	AHE0091	05/01/24	05/03/24	
Metolachlor	EPA 525.3	ND	0.50	ug/L	1	AHE0091	05/01/24	05/03/24	
Metribuzin	EPA 525.3	ND	0.50	ug/L	1	AHE0091	05/01/24	05/03/24	
Molinate	EPA 525.3	ND	2.0	ug/L	1	AHE0091	05/01/24	05/03/24	
Propachlor	EPA 525.3	ND	0.50	ug/L	1	AHE0091	05/01/24	05/03/24	
Simazine	EPA 525.3	ND	1.0	ug/L	1	AHE0091	05/01/24	05/03/24	
Thiobencarb	EPA 525.3	ND	1.0	ug/L	1	AHE0091	05/01/24	05/03/24	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	EPA 525.3	85 %	Acceptable	e range:	70-130 %				
Surrogate: Benzo(a)pyrene-d12	EPA 525.3	93 %	Acceptable	e range:	70-130 %				
Surrogate: Triphenyl Phosphate	EPA 525.3	104 %	Acceptable	e range:	70-130 %				
Glyphosate by HPLC									
Glyphosate	EPA 547	ND	25	ug/L	1	AHD1852	04/30/24	04/30/24	
Surrogate: AMPA	EPA 547	106 %	Acceptable	e range:	70-130 %				
Endothall by GC-MS									
Endothall	EPA 548.1	ND	45	ug/L	1	AHD1692	04/25/24	04/29/24	MS1.2
Diquat by HPLC									
Diquat	EPA 549.2	ND	4.0	ug/L	1	AHD1605	04/25/24	05/03/24	
Haloacetic Acids by GC-MS									
Dibromoacetic Acid (DBAA)	EPA 552.3	ND	1.0	ug/L	1		04/26/24	04/26/24	
Dichloroacetic Acid (DCAA)	EPA 552.3	ND	1.0	ug/L	1		04/26/24	04/26/24	
Monobromoacetic Acid (MBAA)	EPA 552.3	ND	1.0	ug/L	1		04/26/24	04/26/24	
Monochloroacetic Acid (MCAA)	EPA 552.3	ND	2.0	ug/L	1		04/26/24	04/26/24	
Trichloroacetic Acid (TCAA)	EPA 552.3	ND	1.0	ug/L	1	AHD1697	04/26/24	04/26/24	
Total Haloacetic Acids		ND	2.0	ug/L					
Surrogate: 2-Bromobutanoic Acid	EPA 552.3	97 %	Acceptable	e range:	70-130 %				

General Chemistry Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
		EPA 300.	0 - Qua	ality Con	itrol						
Batch: AHD1470 Prep Method: Method Specific F	Preparation										d: 4/23/2024 Analyst: IDN
Blank (AHD1470-BLK1)											
-luoride	ND	0.10	mg/L							04/23/24	
litrate as N	ND	0.23	mg/L							04/23/24	
Chloride	ND	1.0	mg/L							04/23/24	
litrite as N	ND	0.050	mg/L							04/23/24	
litrate + Nitrite as N	ND	0.23	mg/L							04/23/24	
Sulfate as SO4	ND	1.0	mg/L							04/23/24	
Blank Spike (AHD1470-BS1)											
Fluoride	0.99	0.10	mg/L	1.0	ND	99	90-110			04/23/24	
litrate as N	23	0.23	mg/L	23	ND	100	90-110			04/23/24	
Chloride	99	1.0	mg/L	100	ND	99	90-110			04/23/24	
litrite as N	0.93	0.050	mg/L	1.0	ND	93	90-110			04/23/24	
Sulfate as SO4	100	1.0	mg/L	100	ND	100	90-110			04/23/24	
Matrix Spike (AHD1470-MS1), Sc	ource: AHD3403-01										
Fluoride	0.57	0.10	mg/L	0.50	ND	96	80-120			04/23/24	
litrate as N	17	0.23	mg/L	11	5.3	100	80-120			04/23/24	
Chloride	74	1.0	mg/L	50	24	99	80-120			04/23/24	
litrite as N	0.38	0.050	mg/L	0.50	ND	77	80-120			04/23/24	MS1.0 Lou
Sulfate as SO4	57	1.0	mg/L	50	7.2	100	80-120			04/23/24	
Matrix Spike (AHD1470-MS2), Sc	ource: AHD3418-02										
Fluoride	0.59	0.10	mg/L	0.50	ND	101	80-120			04/23/24	
litrate as N	16	0.23	mg/L	11	4.8	102	80-120			04/23/24	
Chloride	63	1.0	mg/L	50	13	100	80-120			04/23/24	
litrite as N	0.38	0.050	mg/L	0.50	ND	76	80-120			04/23/24	MS1.0 <i>Lou</i>
Sulfate as SO4	67	1.0	mg/L	50	16	102	80-120			04/23/24	
Matrix Spike Dup (AHD1470-MSI	D1), Source: AHD3403-01										
Fluoride	0.58	0.10	mg/L	0.50	ND	97	80-120	1	10	04/23/24	
litrate as N	17	0.23	mg/L	11	5.3	101	80-120	1	20	04/23/24	
Chloride	74	1.0	mg/L	50	24	100	80-120	1	20	04/23/24	
litrite as N	0.39	0.050	mg/L	0.50	ND	78	80-120	1	20	04/23/24	MS1.0 Lou
Sulfate as SO4	58	1.0	mg/L	50	7.2	101	80-120	1	20	04/23/24	
Matrix Spike Dup (AHD1470-MSI	D2), Source: AHD3418-02										
-luoride	0.59	0.10	mg/L	0.50	ND	102	80-120	1	10	04/23/24	
litrate as N	16	0.23	mg/L	11	4.8	103	80-120	1	20	04/23/24	
Chloride	64	1.0	mg/L	50	13	101	80-120	1	20	04/23/24	
litrite as N	0.38	0.050	mg/L	0.50	ND	77	80-120	1	20	04/23/24	MS1.0 Lou
Sulfate as SO4	68	1.0	mg/L	50	16	103	80-120	1	20	04/23/24	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

				Source					Date
Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
	EPA 300.	0 - Qua	ality Con	trol					
									Prepared: 4/26/202
ration									Analyst: AA
ND	0.010	ma/L							04/26/24
		3. =							
0.19	0.010	mg/L	0.20	ND	94	90-110			04/26/24
AHD3253-01									
0.12	0.010	mg/L	0.10	0.023	97	80-120			04/26/24
			0.40	0.000	00	00.400		40	0.4.10.0.10.4
0.12	0.010	mg/L	0.10	0.023	98	80-120	1	10	04/26/24
	EPA 300.	1 - Qua	ality Con	trol					
									Prepared: 4/29/202
ration									Analyst: HH
ND	0.0050	ma/l							04/29/24
0.503	0.000	9/=	0.50		101	90-115			04/29/24
0.21	0.0050	ma/l	0.20	ND	103	95 115			04/29/24
0.473	0.0050	mg/L	0.20	ND	95	90-115			04/29/24
	0.0050	mg/L		ND			0	10	04/29/24 04/29/24
0.519			0.50		104	90-115			04/29/24
AHD3396-01									
0.10	0.0050	mg/L	0.10	ND	102	75-125			04/29/24
0.502			0.50		100	90-115			04/29/24
ource: AHD3396-(01								
0.098	0.0050	mg/L	0.10	ND	98	75-125	5	10	04/29/24
0.512			0.50		102	90-115			04/29/24
	EPA 317.	0 - Qua	ality Con	trol					
		- 440		 -					Prepared: 4/30/202
ration									Analyst: HH
NE									04/00/04
ND	1.0	ug/L							04/30/24
11	1.0	ug/L	10	ND	105	85-115			04/30/24
•					AHD32	253 Final FI	NAL 05	22 20	24 1505 05222024 1509
ent. This									
	ration ND 0.19 AHD3253-01 0.12 ource: AHD3253-0 0.12 ration ND 0.503 0.21 0.473 0.21 0.473 0.21 0.519 AHD3396-01 0.10 0.502 ource: AHD3396-0 0.098 0.512 ration ND 11	Tation ND 0.010 0.19 0.010 0.12 0.010 EPA 300. Tation ND 0.12 0.010 EPA 300. Tation O.0050 0.503 0.21 0.473 0.21 0.0050 0.473 0.010 0.502 Ource: AHD3396-01 0.10 0.502 Ource: AHD3396-01 0.098 0.512 EPA 317. Tation ND 1.0 11 1.0	EPA 300.0 - Quaration ND 0.010 mg/L 0.19 0.010 mg/L 0.12 0.010 mg/L Ource: AHD3253-01 0.12 0.010 mg/L EPA 300.1 - Quaration ND 0.0050 mg/L 0.503 0.0050 mg/L 0.473 0.0050 mg/L 0.473 0.0050 mg/L 0.519 0.0050 mg/L EPA 317.0 - Quaration	ND 0.010 mg/L 0.20	Result RL Units Level Result	Result RL Units Level Result %REC	Result RIA Units Level Result %/REC Limits	Result RL Units Lovol Result VAREC Limits RPD	Result RL Units Level Result WREC Limits RPD Limit

			Unite	Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units		Result	%REC	Limits	RPD	Limit	Analyzed Qual
Potob. AUD4900		EPA 317.	0 - Qua	ality Co	ntrol					Draw and 4/20/202
Batch: AHD1809 Prep Method: Method Specific Preparation										Prepared: 4/30/202 Analyst: HH
· · · · · · · · · · · · · · · · · · ·										7 wayou Till
Blank Spike Dup (AHD1809-BSD1) Bromate	10	1.0	ua/l	10	ND	103	85-115	2	10	04/30/24
Diomate	10	1.0	ug/L	10	ND	103	05-115	2	10	04/30/24
Matrix Spike (AHD1809-MS1), Source: AHD										
Bromate	9.8	1.0	ug/L	10	ND	98	75-125			04/30/24
Matrix Spike Dup (AHD1809-MSD1), Source	e: AHD3351-01									
Bromate	9.7	1.0	ug/L	10	ND	97	75-125	1	10	04/30/24
		SM 21201	B - Qua	alitv Coı	ntrol					
Batch: AHD1501				,						Prepared: 4/23/202
Prep Method: Method Specific Preparation										Analyst: KPI
Blank (AHD1501-BLK1)										
Color, Apparent	ND	5.0	CU							04/23/24
_										
Duplicate (AHD1501-DUP1), Source: AHD33 Color, Apparent		5.0	OL I		ND				20	04/23/24
Color, Apparent	ND	5.0	CU		ND				20	04/23/24
		SM 21301	B - Qua	ality Co	ntrol					
Batch: AHD1501										Prepared: 4/23/2024
Prep Method: Method Specific Preparation										Analyst: KPI
Blank (AHD1501-BLK1)										
Turbidity	ND	0.10	NTU							04/23/24
Duplicate (AHD1501-DUP1), Source: AHD3	343-01									
Turbidity	4.8	0.10	NTU		5.1			6	20	04/23/24
		SM 2150I	R - Ous	ality Cou	ntrol					
Batch: AHD1498		OW 21301	J - Que	anty Ooi	111101					Prepared: 4/23/2024
Prep Method: Method Specific Preparation										Analyst: KPI
Plenk (AUD4400 BLV4)										•
Blank (AHD1498-BLK1) Threshold Odor	ND	1.0	T.O.N.							04/23/24
		1.0	1.0.11.							
Blank (AHD1498-BLK2)										
Threshold Odor	ND	1.0	T.O.N.							04/23/24
		SM 23201	B - Qua	ality Co	ntrol					
Batch: AHD1796										Prepared: 4/29/2024
Prep Method: Method Specific Preparation										Analyst: IDN
Blank (AHD1796-BLK1)										
Alkalinity as CaCO3	ND	3.0	mg/L							04/29/24
The results in this report apply to the samples anall accordance with the chain of custody document. The						AHD32	253 Final Fl	INAL 0	5 22 20	24 1505 05222024 1505
nalytical report must be reproduced in its entirety.										Page 9 of 72

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
		SM 2320	B - Qua	ality Con	itrol					
Batch: AHD1796				-						Prepared: 4/29/20
Prep Method: Method Specific Prep	paration									Analyst: IE
Blank (AHD1796-BLK1)										
Bicarbonate as CaCO3	ND	3.0	mg/L							04/29/24
Carbonate as CaCO3	ND	3.0	mg/L							04/29/24
Hydroxide as CaCO3	ND	3.0	mg/L							04/29/24
Blank Spike (AHD1796-BS1)										
Alkalinity as CaCO3	100	3.0	mg/L	100	ND	101	80-120			04/29/24
Blank Spike Dup (AHD1796-BSD1)										
Alkalinity as CaCO3	100	3.0	mg/L	100	ND	100	80-120	1	20	04/29/24
Duplicate (AHD1796-DUP1), Source	: AHD3490-05									
Alkalinity as CaCO3	430	3.0	mg/L		430			1	10	04/29/24
Bicarbonate as CaCO3	430	3.0	mg/L		430			1	10	04/29/24
Carbonate as CaCO3	ND	3.0	mg/L		ND			•	10	04/29/24
Hydroxide as CaCO3	ND	3.0	mg/L		ND				10	04/29/24
		SM 2510	R - Qua	ality Con	itrol					
Batch: AHD1796		OM 2010	D - Qui	inty Oon	11101					Prepared: 4/29/20
Prep Method: Method Specific Prep	paration									Analyst: IE
Blank (AHD1796-BLK1)										
Conductivity @ 25C	ND	1.0	umhos/cn	n						04/29/24
Blank Spike (AHD1796-BS1)										
Conductivity @ 25C	1400	1.0	umhos/cn	n 1400	ND	100	90-110			04/29/24
Blank Spike Dup (AHD1796-BSD1)										
Conductivity @ 25C	1400	1.0	umhos/cn	n 1400	ND	100	90-110	0	5	04/29/24
Duplicate (AHD1796-DUP1), Source	: AHD3490-05									
Conductivity @ 25C	1800	1.0	umhos/cn	n	1800			0	5	04/29/24
		SM 2540	C - Qua	ality Con	itrol					
Batch: AHD1552										Prepared: 4/24/20
Prep Method: Method Specific Prep	paration									Analyst: RF
Blank (AHD1552-BLK1)										
Total Dissolved Solids	ND	5.0	mg/L							04/24/24
Blank Spike (AHD1552-BS1)										
Total Dissolved Solids	970		mg/L	1000		97	70-130			04/24/24
Duplicate (AHD1552-DUP1), Source	: AHD3428-01									
Total Dissolved Solids	950	5.0	mg/L		990			4	10	04/24/24
The results in this report apply to the sam ccordance with the chain of custody doc nalytical report must be reproduced in its	ument. This		•			AHD32	253 Final Fl	NAL 0	5 22 20	24 1505 05222024 150
<u> </u>	-	voice/ B9	N A a a a	! . 4						Page 9 of 7

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		SM 2540	C - Qua	ality Co	ntrol						
Batch: AHD1552										Prepared	d: 4/24/202
Prep Method: Method Specific Prepara	ation									Aı	nalyst: RR
Duplicate (AHD1552-DUP2), Source: Al	HD3352-02										
Total Dissolved Solids	750	5.0	mg/L		750			0	10	04/24/24	
		SM 4500-C	I F - Q	uality C	ontrol						
Batch: AHD1473										Prepared	d: 4/23/202
Prep Method: Method Specific Prepara	ation									Α	nalyst: AA
Blank (AHD1473-BLK1)											
Chlorine, Free Residual (1)	ND	0.10	mg/L							04/23/24	
Dichloramine (1)	ND	0.10	mg/L							04/23/24	
Chlorine, Total Residual (1)	ND	0.10	mg/L							04/23/24	
Monochloramine (1)	ND	0.10	mg/L							04/23/24	
Blank Spike (AHD1473-BS1)											
Chlorine, Free Residual (1)	5.2	0.10	mg/L	5.0	ND	104	80-120			04/23/24	
Chlorine, Total Residual (1)	5.2	0.10	mg/L	5.0	ND	104	80-120			04/23/24	
Duplicate (AHD1473-DUP1), Source: Al	HD3186-01										
Chlorine, Free Residual (1)	ND	0.10	mg/L		ND				20	04/23/24	
Dichloramine (1)	ND	0.10	mg/L		ND				20	04/23/24	
Chlorine, Total Residual (1)	ND	0.10	mg/L		ND				20	04/23/24	
Monochloramine (1)	ND	0.10	mg/L		ND				20	04/23/24	
		SM 4500-C	NE-C	Quality C	ontrol						
Batch: AHD1724										Prepared	d: 4/26/202
Prep Method: SM 4500-CN C / EPA 901	0C									A	nalyst: PX
Blank (AHD1724-BLK1)											
Cyanide (total)	ND	5.0	ug/L							04/26/24	
Blank Spike (AHD1724-BS1)											
Cyanide (total)	230	5.0	ug/L	250	ND	91	80-120			04/26/24	
Blank Spike Dup (AHD1724-BSD1)											
Cyanide (total)	230	5.0	ug/L	250	ND	90	80-120	1	20	04/26/24	
Matrix Spike (AHD1724-MS1), Source: A	AHD3057-01										
Cyanide (total)	220	5.0	ug/L	250	ND	88	80-120			04/26/24	
		5.0	ug/L	200			55 120			5 _ 0/ _ f	
Matrix Spike Dup (AHD1724-MSD1), So Cyanide (total)	230	5.0		250	ND	91	80-120	1	20	04/26/24	
yanıu c (waı)	230	5.0	ug/L			91	00-120	4	20	U 4 /20/24	
Databa AUDAFCA		SM 4500-H	+ B - C	uality C	ontrol					5	1 4/00:55
Batch: AHD1501											d: 4/23/202
Prep Method: Method Specific Prepara	ition									A	nalyst: KF

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analyte	Result	RL	Sp Units Le	ike Source vel Result		%REC Limits	RPD	RPD Limit	Date Analyzed Qual
		SM 4500-H	+ B - Qua	lity Control					
Batch: AHD1501									Prepared: 4/23/2024
Prep Method: Method Specific Prep	aration								Analyst: KPD
Duplicate (AHD1501-DUP1), Source:	: AHD3343-01								
Color pH (1)	6.80		pH Units	6.80)		0		04/23/24
		SM 4500-H	+ B - Qua	lity Control					
Batch: AHD1796									Prepared: 4/29/2024
Prep Method: Method Specific Prep	aration								Analyst: IDM
Duplicate (AHD1796-DUP1), Source:	: AHD3490-05								
pH (1)	7.47	0.0	pH Units	7.52	2		1		04/29/24
		SM 5540	C - Quality	v Control					
Batch: AHD1500			•	•					Prepared: 4/23/2024
Prep Method: Method Specific Prep	aration								Analyst: PXC
Blank (AHD1500-BLK1)									
MBAS, Calculated as LAS, mol wt 340	ND	0.050	mg/L						04/24/24
Blank Spike (AHD1500-BS1)									
=:a:									
MBAS, Calculated as LAS, mol wt 340	0.86	0.050	mg/L	1.0 ND	86	82-112			04/24/24
	0.86	0.050	mg/L	1.0 ND	86	82-112			04/24/24
MBAS, Calculated as LAS, mol wt 340	0.86	0.050 0.050	mg/L	1.0 ND		82-112 82-112	1	20	04/24/24
MBAS, Calculated as LAS, mol wt 340 Blank Spike Dup (AHD1500-BSD1)	0.86		Ū				1	20	
MBAS, Calculated as LAS, mol wt 340 Blank Spike Dup (AHD1500-BSD1) MBAS, Calculated as LAS, mol wt 340	0.86		Ū		86		1	20	
MBAS, Calculated as LAS, mol wt 340 Blank Spike Dup (AHD1500-BSD1) MBAS, Calculated as LAS, mol wt 340 Matrix Spike (AHD1500-MS1), Source	0.86 e: AHD3186-01 0.87	0.050 0.050	mg/L	1.0 ND	86	82-112	1	20	04/24/24

BSK Associates Laboratory Fresno Metals Quality Control Report

		netais Qua	etals Quality Control Report								
			Unito	Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 200.	7 - Qua	lity Cor	ntrol						
Batch: AHD1657										Prepare	ed: 4/25/2024
Prep Method: EPA 200.2										Α	nalyst: MDS
Blank (AHD1657-BLK2)											
Aluminum	ND	50	ug/L							04/29/24	
Barium	ND	50	ug/L							04/29/24	
Calcium	ND	0.10	mg/L							04/29/24	
Iron	ND	30	ug/L							04/29/24	
Potassium	ND	2.0	mg/L							04/29/24	
Magnesium	ND	0.10	mg/L							04/29/24	
Manganese	ND	10	ug/L							04/29/24	
Sodium	ND	1.0	mg/L							04/29/24	
Division (AUD4057 DOC)											
Blank Spike (AHD1657-BS2)	220	50		240	ND	01	0E 11E			04/29/24	
Barium	220	50	ug/L	240	ND	91	85-115				
Calcium	4.5	0.10	mg/L	4.8	ND	93	85-115			04/29/24	
Iron	210	30	ug/L	240	ND	88	85-115			04/29/24	
Potassium	4.3	2.0	mg/L	4.8	ND	90	85-115			04/29/24	
Magnesium	4.4	0.10	mg/L	4.8	ND	91	85-115			04/29/24	
Manganese	210	10	ug/L	240	ND	88	85-115			04/29/24	
Blank Spike (AHD1657-BS3)											
Aluminum	240	50	ug/L	240	ND	102	85-115			05/01/24	
Sodium	4.2	1.0	mg/L	4.8	ND	88	85-115			05/01/24	
Blank Spike Dup (AHD1657-BSD2)											
Barium	240	50	ug/L	240	ND	100	85-115	9	20	04/29/24	
Calcium	4.7	0.10	mg/L	4.8	ND	98	85-115	5	20	04/29/24	
Iron	230	30	ug/L	240	ND	97	85-115	10	20	04/29/24	
Potassium	4.6	2.0	mg/L	4.8	ND	96	85-115	6	20	04/29/24	
Magnesium	4.8	0.10	mg/L	4.8	ND	99	85-115	9	20	04/29/24	
Manganese	230	10	ug/L	240	ND	96	85-115	8	20	04/29/24	
Plant Chike Dun (AUD4657 DCD2)											
Blank Spike Dup (AHD1657-BSD3) Aluminum	230	5 0	//	240	ND	95	85-115	7	20	04/29/24	
Sodium	4.3	50 1.0	ug/L mg/L	4.8	ND	90	85-115	3	20	04/29/24	
		1.0	g/L					_			
Matrix Spike (AHD1657-MS3), Source: Al											
Aluminum	230	50	ug/L	240	ND	97	70-130			04/29/24	
Barium	250	50	ug/L	240	ND	104	70-130			04/29/24	
Calcium .	14	0.10	mg/L	4.8	8.6	114	70-130			04/29/24	
Iron	280	30	ug/L	240	31	104	70-130			04/29/24	
Potassium	6.4	2.0	mg/L	4.8	ND	98	70-130			04/29/24	
Magnesium	19	0.10	mg/L	4.8	13	132	70-130				MS1.0 High
Manganese	240	10	ug/L	240	ND	102	70-130			04/29/24	
Sodium	13	1.0	mg/L	4.8	7.5	108	70-130			04/29/24	

Matrix Spike (AHD1657-MS4), Source: AHD3253-01

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno **Metals Quality Control Report**

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 200.	7 - Qual	lity Con	trol						
Batch: AHD1657										Prepare	d: 4/25/202
Prep Method: EPA 200.2										Ar	nalyst: MD
Matrix Spike (AHD1657-MS4), Sourc	e: AHD3253-01										
Aluminum	210	50	ug/L	240	ND	88	70-130			04/29/24	
Barium	250	50	ug/L	240	ND	102	70-130			04/29/24	
Calcium	11	0.10	mg/L	4.8	6.8	90	70-130			04/29/24	
ron	230	30	ug/L	240	ND	94	70-130			04/29/24	
Potassium	5.2	2.0	mg/L	4.8	ND	108	70-130			04/29/24	
/lagnesium	98	0.10	mg/L	4.8	97	10	70-130			04/29/24	MS1.0 <i>Lo</i>
Manganese	230	10	ug/L	240	ND	95	70-130			04/29/24	
Sodium	14	1.0	mg/L	4.8	9.7	90	70-130			04/29/24	
Matrix Spike Dup (AHD1657-MSD3),	Source: AHD3189-02										
Aluminum	210	50	ug/L	240	ND	89	70-130	8	20	04/29/24	
Barium	240	50	ug/L	240	ND	99	70-130	5	20	04/29/24	
Calcium	13	0.10	mg/L	4.8	8.6	101	70-130	4	20	04/29/24	
ron	270	30	ug/L	240	31	98	70-130	5	20	04/29/24	
Potassium	6.3	2.0	mg/L	4.8	ND	96	70-130	2	20	04/29/24	
/agnesium	18	0.10	mg/L	4.8	13	113	70-130	5	20	04/29/24	
/anganese	230	10	ug/L	240	ND	96	70-130	6	20	04/29/24	
odium	12	1.0	mg/L	4.8	7.5	103	70-130	2	20	04/29/24	
Matrix Spike Dup (AHD1657-MSD4),	Source: AHD3253-01										
Numinum	230	50	ug/L	240	ND	96	70-130	8	20	04/29/24	
Barium	250	50	ug/L	240	ND	105	70-130	3	20	04/29/24	
Calcium	12	0.10	mg/L	4.8	6.8	98	70-130	3	20	04/29/24	
ron	230	30	ug/L	240	ND	96	70-130	2	20	04/29/24	
Potassium	5.2	2.0	•	4.8	ND	109	70-130	1	20	04/29/24	
Magnesium	100		mg/L	4.8	97	87	70-130	4	20	04/29/24	
Manganese	230	0.10	mg/L	240	97 ND			1	20	04/29/24	
Sodium	14	10 1.0	ug/L mg/L	4.8	9.7	96 94	70-130 70-130	1	20	04/29/24	
		EPA 200.	s - Oual	lity Con	trol						
Batch: AHD1657		LI A 200.	o - Quai	iity Ooii	u oi					Prepare	d: 4/25/20:
Prep Method: EPA 200.2											nalyst: AF
Blank (AHD1657-BLK1)											
Beryllium	ND	1.0	ug/L							05/01/24	
Chromium	ND	10	ug/L							05/01/24	
lickel	ND	10	ug/L							05/01/24	
Copper	ND	5.0	ug/L							05/01/24	
inc	ND	50	ug/L							05/01/24	
rsenic	ND	2.0	ug/L							05/01/24	
Selenium	ND	2.0	ug/L							05/01/24	
Silver	ND	10	ug/L							05/01/24	
Cadmium	ND	1.0	_							05/01/24	
/ddiriidill	ND	1.0	ug/L							00/01/24	

accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Metals Quality Control Report Source %REC RPD Spike Date Units Level RL %REC RPD Analyte Result Result Limits Limit Analyzed Qual EPA 200.8 - Quality Control Batch: AHD1657 Prepared: 4/25/2024 Prep Method: EPA 200.2 Analyst: AHS Blank (AHD1657-BLK1) Antimony ND 05/01/24 2.0 ug/L Thallium ND 05/01/24 1.0 ug/L Lead ND 05/01/24 1.0 ug/L Uranium ND 05/01/24 1.0 ug/L Blank Spike (AHD1657-BS1) Beryllium 220 1.0 ug/L 240 ND 90 85-115 05/01/24 Chromium 230 240 ND 97 85-115 05/01/24 10 ug/L Nickel 240 10 ug/L 240 ND 99 85-115 05/01/24 NΠ Copper 230 240 97 85-115 05/01/24 5.0 ug/L 200 ND 85-115 05/01/24 Zinc 50 240 85 ug/L 90 Arsenic 220 2.0 240 ND 85-115 05/01/24 ug/L Silver 120 120 ND 97 75-125 05/01/24 10 ug/L Cadmium 220 1.0 ug/L 240 ND 92 85-115 05/01/24 85-115 Antimony 240 2.0 ug/L 240 ND 100 05/01/24 Thallium 230 240 ND 97 85-115 05/01/24 1.0 ug/L Lead 230 ND 97 05/01/24 240 85-115 1.0 ug/L Uranium 250 240 ND 102 85-115 05/01/24 1.0 ug/L Blank Spike (AHD1657-BS4) Selenium 210 240 ND 86 85-115 05/02/24 2.0 ug/L Blank Spike Dup (AHD1657-BSD1) 89 85-115 05/01/24 Beryllium 210 ug/L 240 ND 1 20 1.0 96 230 ND 20 05/01/24 Chromium 10 ug/L 240 85-115 1 Nickel 230 ug/L 240 ND 96 85-115 3 20 05/01/24 10 Copper 230 240 ND 95 85-115 2 20 05/01/24 5.0 ug/L 210 240 ND 86 85-115 1 20 05/01/24 7inc 50 ug/L Arsenic 210 240 ND 89 85-115 1 20 05/01/24 2.0 ug/L 97 75-125 20 05/01/24 Silver 120 120 ND 10 ug/L 1 Cadmium 220 1.0 ug/L 240 ND 93 85-115 0 20 05/01/24 240 240 ND 20 05/01/24 Antimony 99 85-115 1 2.0 ug/L Thallium 230 96 85-115 1 20 05/01/24 ug/L 240 ND 10 Lead 230 240 NΠ 96 85-115 0 20 05/01/24 1.0 ug/L 250 05/01/24 Uranium 240 ND 103 85-115 1 20 1.0 ug/L Blank Spike Dup (AHD1657-BSD4) Selenium 210 20 ug/L 240 ND 88 85-115 2 20 05/02/24 Matrix Spike (AHD1657-MS1), Source: AHD3189-02 ND Beryllium 210 240 89 70-130 05/01/24 1.0 ug/L Chromium 230 10 ug/L 240 ND 95 70-130 05/01/24

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

230

Nickel

AHD3253 Final FINAL 05 22 2024 1505 05222024 1505

05/01/24

ug/L

10

240

ND

95

70-130

BSK Associates Laboratory Fresno Motals Quality Control Report

	M	etals Qual	lity Co	ontrol l	Report						
				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 200.	8 - Qua	ality Cor	ntrol						
Batch: AHD1657											d: 4/25/202
Prep Method: EPA 200.2										A	nalyst: Al-
Matrix Spike (AHD1657-MS1), Sou	ırce: AHD3189-02										
Copper	220	5.0	ug/L	240	ND	93	70-130			05/01/24	
Zinc	200	50	ug/L	240	ND	83	70-130			05/01/24	
Arsenic	210	2.0	ug/L	240	4.1	88	70-130			05/01/24	
Selenium	190	2.0	ug/L	240	ND	80	70-130			05/01/24	
Silver	110	10	ug/L	120	ND	96	70-130			05/01/24	
Cadmium	220	1.0	ug/L	240	ND	91	70-130			05/01/24	
Antimony	240	2.0	ug/L	240	ND	100	70-130			05/01/24	
- Fhallium	230	1.0	ug/L	240	ND	94	70-130			05/01/24	
₋ead	220	1.0	ug/L	240	ND	93	70-130			05/01/24	
Jranium	240	1.0	ug/L	240	ND	101	70-130			05/01/24	
Matrix Spike (AHD1657-MS2), Sou	Iron: AUD2252 04										
Beryllium	220	1.0	ua/l	240	ND	91	70-130			05/01/24	
Chromium	240		ug/L	240	ND	99	70-130			05/01/24	
lickel	230	10	ug/L	240	ND		70-130			05/01/24	
		10	ug/L			96 80					
Copper	220	5.0	ug/L	240	ND	89	70-130			05/01/24	
Zinc	210	50	ug/L	240	ND	86	70-130			05/01/24	
Arsenic	210	2.0	ug/L	240	ND	89	70-130			05/01/24	
Selenium	200	2.0	ug/L	240	ND	83	70-130			05/01/24	
Silver	110	10	ug/L	120	ND	94	70-130			05/01/24	
Cadmium	220	1.0	ug/L	240	ND	90	70-130			05/01/24	
Antimony	240	2.0	ug/L	240	ND	98	70-130			05/01/24	
Fhallium	220	1.0	ug/L	240	ND	92	70-130			05/01/24	
_ead	220	1.0	ug/L	240	ND	91	70-130			05/01/24	
Jranium	240	1.0	ug/L	240	ND	99	70-130			05/01/24	
Matrix Spike Dup (AHD1657-MSD	1), Source: AHD3189-02										
Beryllium	210	1.0	ug/L	240	ND	89	70-130	1	20	05/01/24	
Chromium	230	10	ug/L	240	ND	95	70-130	1	20	05/01/24	
Nickel	220	10	ug/L	240	ND	94	70-130	2	20	05/01/24	
Copper	220	5.0	ug/L	240	ND	91	70-130	2	20	05/01/24	
Zinc	200	50	ug/L	240	ND	82	70-130	1	20	05/01/24	
Arsenic	220	2.0	ug/L	240	4.1	88	70-130	1	20	05/01/24	
Selenium	190	2.0	ug/L	240	ND	81	70-130	1	20	05/01/24	
Silver	110	10	ug/L	120	ND	95	70-130	1	20	05/01/24	
Cadmium	210	1.0	ug/L	240	ND	89	70-130	3	20	05/01/24	
Antimony	240	2.0	ug/L	240	ND	98	70-130	1	20	05/01/24	
Fhallium	230	1.0	ug/L	240	ND	94	70-130	0	20	05/01/24	
ead	230	1.0	ug/L	240	ND	94	70-130	1	20	05/01/24	
Jranium	240	1.0	ug/L	240	ND	99	70-130	2	20	05/01/24	
Matrix Spike Dup (AHD1657-MSD	2) Source: AHD3253_04										
Beryllium	220 220	1.0	ug/L	240	ND	92	70-130	1	20	05/01/24	
		1.0	ug/L	_ +0	110	0 <u>2</u>	. 5 100		_0	55/01/27	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Uranium

BSK Associates Laboratory Fresno

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit	Date Analyzed Qual	
		EPA 200.	8 - Qua	lity Cor	ntrol						
Batch: AHD1657										Prepared: 4/2	5/2024
Prep Method: EPA 200.2										Analyst	: AHS
Matrix Spike Dup (AHD1657-MSD2), Source: AHD3253-01										
Chromium	240	10	ug/L	240	ND	100	70-130	1	20	05/01/24	
Nickel	230	10	ug/L	240	ND	95	70-130	1	20	05/01/24	
Copper	230	5.0	ug/L	240	ND	93	70-130	4	20	05/01/24	
Zinc	210	50	ug/L	240	ND	87	70-130	1	20	05/01/24	
Arsenic	210	2.0	ug/L	240	ND	88	70-130	0	20	05/01/24	
Selenium	200	2.0	ug/L	240	ND	83	70-130	0	20	05/01/24	
Silver	110	10	ug/L	120	ND	94	70-130	0	20	05/01/24	
Cadmium	220	1.0	ug/L	240	ND	90	70-130	0	20	05/01/24	
Antimony	240	2.0	ug/L	240	ND	99	70-130	1	20	05/01/24	
Thallium	230	1.0	ug/L	240	ND	94	70-130	2	20	05/01/24	
Lead	220	1.0	ug/L	240	ND	92	70-130	1	20	05/01/24	

ug/L

1.0

240

ND

101

70-130

2

20

05/01/24

240

Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual	
		EPA 504.	1 - Qua	ality Con	itrol							
Batch: AHD1779										Prepare	d: 4/29	9/202
Prep Method: EPA 504/505										A	nalyst:	ΚM
Blank (AHD1779-BLK1)												
Ethylene Dibromide (EDB)	ND	0.020	ug/L							04/29/24		
Dibromochloropropane (DBCP)	ND	0.010	ug/L							04/29/24		
Surrogate: 1-Br-2-Nitrobenzene	0.44		Ü	0.46		96	70-130			04/29/24		
Blank Spike (AHD1779-BS1)												
Ethylene Dibromide (EDB)	0.098	0.020	ug/L	0.10	ND	98	70-130			04/29/24		
Dibromochloropropane (DBCP)	0.099	0.010	ug/L	0.10	ND	99	70-130			04/29/24		
Surrogate: 1-Br-2-Nitrobenzene	0.43		J	0.46		95	70-130			04/29/24		
Blank Spike Dup (AHD1779-BSD1)												
Ethylene Dibromide (EDB)	0.11	0.020	ug/L	0.10	ND	106	70-130	7	20	04/30/24		
Dibromochloropropane (DBCP)	0.10	0.010	ug/L	0.10	ND	105	70-130	5	20	04/30/24		
Surrogate: 1-Br-2-Nitrobenzene	0.45		J	0.46		99	70-130			04/30/24		
Matrix Spike (AHD1779-MS1), Source:	AHD3253-01											
Ethylene Dibromide (EDB)	0.11	0.020	ug/L	0.10	ND	105	65-135			04/29/24		
Dibromochloropropane (DBCP)	0.10	0.010	ug/L	0.10	ND	103	65-135			04/29/24		
Surrogate: 1-Br-2-Nitrobenzene	0.44		J	0.46		97	70-130			04/29/24		
Matrix Spike (AHD1779-MS2), Source:	AHD3523-01											
Ethylene Dibromide (EDB)	0.11	0.020	ug/L	0.10	ND	105	65-135			04/29/24		
Dibromochloropropane (DBCP)	0.10	0.010	ug/L	0.10	ND	102	65-135			04/29/24		
Surrogate: 1-Br-2-Nitrobenzene	0.45			0.47		96	70-130			04/29/24		
		EPA 505	- Qua	lity Cont	rol							
Batch: AHD1779										Prepare		
Prep Method: EPA 504/505										A	nalyst:	KM
Blank (AHD1779-BLK1)												
Aldrin	ND	0.075	ug/L							04/29/24		
Chlordane (Technical)	ND	0.10	ug/L							04/29/24		
Dieldrin	ND	0.020	ug/L							04/29/24		
Endrin	ND	0.10	ug/L							04/29/24		
Heptachlor	ND	0.010	ug/L							04/29/24		
Heptachlor Epoxide	ND	0.010	ug/L							04/29/24		
Hexachlorobenzene	ND	0.50	ug/L							04/29/24		
Hexachlorocyclopentadiene	ND	1.0	ug/L							04/29/24		
indane	ND	0.20	ug/L							04/29/24		
Methoxychlor	ND	10	ug/L							04/29/24		
PCB Aroclor Screen	ND	0.50	ug/L							04/29/24		
Toxaphene	ND	1.0	ug/L							04/29/24		
Surrogate: 1-Br-2-Nitrobenzene	0.44			0.46		96	70-130			04/29/24		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Organics Quality Control Report

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 505	- Qual	itv Cont	trol						
Batch: AHD1779			-	,						Prepared	: 4/29/2024
Prep Method: EPA 504/505											alyst: KM <i>A</i>
Blank Spike (AHD1779-BS1)											
Aldrin	0.71	0.075	ug/L	0.74	ND	96	70-130			04/29/24	
Dieldrin	0.21	0.020	ug/L	0.20	ND	106	70-130			04/29/24	
Endrin	0.11	0.10	ug/L	0.10	ND	113	70-130			04/29/24	
Heptachlor	0.098	0.010	ug/L	0.10	ND	98	70-130			04/29/24	
Heptachlor Epoxide	0.11	0.010	ug/L	0.10	ND	105	70-130			04/29/24	
Hexachlorobenzene	1.0	0.50	ug/L	1.0	ND	101	70-130			04/29/24	
Hexachlorocyclopentadiene	0.82	1.0	ug/L	1.0	ND	82	70-130			04/29/24	
Lindane	0.21	0.20	ug/L	0.20	ND	103	70-130			04/29/24	
Methoxychlor	1.1		-	1.0	ND	114	70-130			04/29/24	
Surrogate: 1-Br-2-Nitrobenzene	0.43	10	ug/L	0.46	ND	95	70-130			04/29/24	
ourrogate. I bi E ivitioberizerie	0.40			0.40		30	70 700			04/20/24	
Blank Spike Dup (AHD1779-BSD1)											
Aldrin	0.76	0.075	ug/L	0.74	ND	102	70-130	6	20	04/30/24	
Dieldrin	0.22	0.020	ug/L	0.20	ND	110	70-130	3	20	04/30/24	
Endrin	0.11	0.10	ug/L	0.10	ND	110	70-130	3	20	04/30/24	
Heptachlor	0.10	0.010	ug/L	0.10	ND	102	70-130	4	20	04/30/24	
Heptachlor Epoxide	0.11	0.010	ug/L	0.10	ND	110	70-130	4	20	04/30/24	
Hexachlorobenzene	1.1	0.50	ug/L	1.0	ND	106	70-130	4	20	04/30/24	
Hexachlorocyclopentadiene	0.83	1.0	ug/L	1.0	ND	83	70-130	1	20	04/30/24	
Lindane	0.21	0.20	ug/L	0.20	ND	105	70-130	2	20	04/30/24	
Methoxychlor	1.2	10	ug/L	1.0	ND	116	70-130	1	20	04/30/24	
Surrogate: 1-Br-2-Nitrobenzene	0.45			0.46		99	70-130			04/30/24	
Matrix Spike (AHD1779-MS1), Source	e: AHD3253-01										
Aldrin	0.73	0.075	ug/L	0.74	ND	98	65-135			04/29/24	
Dieldrin	0.22	0.020	ug/L	0.20	ND	111	65-135			04/29/24	
Endrin	0.11	0.10	ug/L	0.10	ND	108	65-135			04/29/24	
Heptachlor	0.10	0.010	ug/L	0.10	ND	100	65-135			04/29/24	
Heptachlor Epoxide	0.11	0.010	ug/L	0.10	ND	106	65-135			04/29/24	
Hexachlorobenzene	1.0	0.50	ug/L	1.0	ND	104	65-135			04/29/24	
Hexachlorocyclopentadiene	0.84	1.0	ug/L	1.0	ND	84	65-135			04/29/24	
Lindane	0.21	0.20	ug/L	0.20	ND	103	65-135			04/29/24	
Methoxychlor	1.1	10	ug/L ug/L	1.0	ND	115	65-135			04/29/24	
Surrogate: 1-Br-2-Nitrobenzene	0.44	10	ug/L	0.46	NB	97	70-130			04/29/24	
Market Court of Assistance and Court of	. AllBeree St										
Matrix Spike (AHD1779-MS2), Source		2 2==		0.70	NID.	101	65 405			04/20/04	
Aldrin	0.77	0.075	ug/L	0.76	ND	101	65-135			04/29/24	
Dieldrin	0.22	0.020	ug/L	0.20	ND	107	65-135			04/29/24	
Endrin	0.11	0.10	ug/L	0.10	ND	110	65-135			04/29/24	
Heptachlor	0.10	0.010	ug/L	0.10	ND	101	65-135			04/29/24	
Heptachlor Epoxide	0.11	0.010	ug/L	0.10	ND	107	65-135			04/29/24	
Hexachlorobenzene	1.1	0.50	ug/L	1.0	ND	105	65-135			04/29/24	
Hexachlorocyclopentadiene	0.89	1.0	ug/L	1.0	ND	87	65-135			04/29/24	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Organics Quality Control Report

		rganics Qua		Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units		Result	%REC	Limits	RPD		Analyzed	Qual
		EPA 505	- Qual	lity Con	trol						
Batch: AHD1779				,						Prepare	ed: 4/29/202
Prep Method: EPA 504/505											nalyst: KM/
Matrix Spike (AHD1779-MS2), Sourc	e: AHD3523-01										
Lindane	0.21	0.20	ug/L	0.20	ND	103	65-135			04/29/24	
Methoxychlor	1.2	10	ug/L	1.0	ND	115	65-135			04/29/24	
Surrogate: 1-Br-2-Nitrobenzene	0.45			0.47		96	70-130			04/29/24	
		EPA 515.	4 - Qua	ality Cor	ntrol						
Batch: AHD1614										Prepare	ed: 4/25/2024
Prep Method: EPA 515.4										Α	nalyst: RDI
Blank (AHD1614-BLK1)											
2,4,5-T	ND	1.0	ug/L							04/25/24	
2,4,5-TP (Silvex)	ND	1.0	ug/L							04/25/24	
2,4-D	ND	10	ug/L							04/25/24	
Bentazon	ND	2.0	ug/L							04/25/24	
Dalapon	ND	10	ug/L							04/25/24	
Dicamba	ND	1.5	ug/L							04/25/24	
Dinoseb	ND	2.0	ug/L							04/25/24	
Pentachlorophenol	ND	0.20	ug/L							04/25/24	
Picloram	ND	1.0	ug/L							04/25/24	
Surrogate: DCPAA	36			36		101	70-130			04/25/24	
Matrix Spike (AHD1614-MS1), Sourc	e: AHD2780-01										
2,4,5-T	1.9	1.0	ug/L	1.6	ND	120	70-130			04/25/24	
2,4,5-TP (Silvex)	0.94	1.0	ug/L	0.80	ND	118	70-130			04/25/24	
2,4-D	0.50	10	ug/L	0.40	ND	125	70-130			04/25/24	
Bentazon	2.5	2.0	ug/L	2.0	ND	123	70-130			04/25/24	
Dalapon	15	10	ug/L	4.0	ND	384	70-130			04/25/24	MS1.0 High
Dicamba	0.89	1.5	ug/L	0.80	ND	111	70-130			04/25/24	
Dinoseb	0.77	2.0	ug/L	0.80	ND	96	70-130			04/25/24	
Pentachlorophenol	0.19	0.20	ug/L	0.16	ND	118	70-130			04/25/24	
Picloram	0.44	1.0	ug/L	0.40	ND	110	70-130			04/25/24	
Surrogate: DCPAA	40			36		110	70-130			04/25/24	
Matrix Spike Dup (AHD1614-MSD1),	Source: AHD2780-0	1									
2,4,5-T	1.8	1.0	ug/L	1.6	ND	112	70-130	7	30	04/25/24	
2,4,5-TP (Silvex)	0.90	1.0	ug/L	0.80	ND	112	70-130	5	30	04/25/24	
2,4-D	0.47	10	ug/L	0.40	ND	117	70-130	7	30	04/25/24	
Bentazon	2.4	2.0	ug/L	2.0	ND	119	70-130	3	30	04/25/24	
Dalapon	15	10	ug/L	4.0	ND	367	70-130	5	30	04/25/24	MS1.0 High
Dicamba	0.85	1.5	ug/L	0.80	ND	107	70-130	4	30	04/25/24	
Dinoseb	0.70	2.0	ug/L	0.80	ND	88	70-130	9	30	04/25/24	
Pentachlorophenol	0.18	0.20	ug/L	0.16	ND	114	70-130	4	30	04/25/24	
Picloram	0.39	1.0	ug/L	0.40	ND	99	70-130	11	30	04/25/24	
Surrogate: DCPAA	39			36		108	70-130			04/25/24	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

analytical report must be reproduced in its entirety.

BSK Associates Laboratory Fresno

Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual	
		EPA 525.	3 - Qua	ality Cor	ntrol							
Batch: AHE0091										Prepar	ed: 5/	1/20
Prep Method: EPA 525.3											nalyst	
Blank (AHE0091-BLK1)												
Alachlor	ND	1.0	ug/L							05/03/24		
Atrazine	ND	0.50	ug/L							05/03/24		
Benzo(a)pyrene	ND	0.10	ug/L							05/03/24		
Bis(2-ethylhexyl) adipate	ND	5.0	ug/L							05/03/24		
Bis(2-ethylhexyl) phthalate	ND	3.0	ug/L							05/03/24		
Bromacil	ND	10	ug/L							05/03/24		
Butachlor	ND	0.38	ug/L							05/03/24		
Diazinon	ND	0.25	ug/L							05/03/24		
Dimethoate	ND	10	ug/L							05/03/24		
Metolachlor	ND	0.50	ug/L							05/03/24		
Metribuzin	ND	0.50	ug/L							05/03/24		
Molinate	ND	2.0	ug/L							05/03/24		
Propachlor	ND	0.50	ug/L							05/03/24		
Simazine	ND	1.0	ug/L							05/03/24		
Thiobencarb	ND	1.0	ug/L							05/03/24		
Surrogate: 1,3-Dimethyl-2-nitrobenzene	0.80		- 3	1.0		80	70-130			05/03/24		
Surrogate: Benzo(a)pyrene-d12	0.98			1.0		98	70-130			05/03/24		
Surrogate: Triphenyl Phosphate	1.1			1.0		109	70-130			05/03/24		
Blank Spike (AHE0091-BS1)												
Alachlor	1.8	1.0	ug/L	1.6	ND	113	70-130			05/03/24		
Atrazine	0.74	0.50	ug/L	0.80	ND	92	70-130			05/03/24		
Benzo(a)pyrene	0.18	0.10	ug/L	0.16	ND	111	70-130			05/03/24		
Bis(2-ethylhexyl) adipate	3.9	5.0	ug/L	3.2	ND	122	70-130			05/03/24		
Bis(2-ethylhexyl) phthalate	6.2	3.0	ug/L	4.8	ND	130	70-130			05/03/24		
Bromacil	1.1	10	ug/L	0.80	ND	143	70-130			05/03/24	BS	Hi
Butachlor	1.2	0.38	ug/L	0.80	ND	146	70-130			05/03/24	BS	Hi
Diazinon	0.19	0.25	ug/L	0.16	ND	116	70-130			05/03/24		
Dimethoate	8.1	10	ug/L	6.4	ND	127	70-130			05/03/24		
Metolachlor	0.93	0.50	ug/L	0.80	ND	116	70-130			05/03/24		
Metribuzin	0.98	0.50	ug/L	0.80	ND	122	70-130			05/03/24		
Molinate	0.87	2.0	ug/L	0.80	ND	109	70-130			05/03/24		
Propachlor	0.88	0.50	ug/L	0.80	ND	110	70-130			05/03/24		
Simazine	0.48	1.0	ug/L	0.56	ND	86	70-130			05/03/24		
Thiobencarb	0.87	1.0	ug/L	0.80	ND	108	70-130			05/03/24		
Surrogate: 1,3-Dimethyl-2-nitrobenzene	0.89		Ü	1.0		89	70-130			05/03/24		
Surrogate: Benzo(a)pyrene-d12	1.1			1.0		108	70-130			05/03/24		
Surrogate: Triphenyl Phosphate	1.2			1.0		116	70-130			05/03/24		
Blank Spike Dup (AHE0091-BSD1)												
Alachlor	1.7	1.0	ug/L	1.6	ND	109	70-130	4	30	05/03/24		
Atrazine	0.65	0.50	ug/L	0.80	ND	81	70-130	13	30	05/03/24		
Benzo(a)pyrene	0.18	0.10	ug/L	0.16	ND	111	70-130	0	30	05/03/24		
Bis(2-ethylhexyl) adipate	4.0	5.0	ug/L	3.2	ND	125	70-130	2	30	05/03/24		
he results in this report apply to the samples	analyzad in						253 Final FI					

Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual	
		EPA 525.							-Limit		-caul	
Batch: AHE0091		LI A 020.	J - Qui	anty Con						Prepar	ed: 5/	1/20:
Prep Method: EPA 525.3										•	nalyst:	
Blank Spike Dup (AHE0091-BSD1)												
Bis(2-ethylhexyl) phthalate	6.1	3.0	ug/L	4.8	ND	126	70-130	3	30	05/03/24		
Bromacil	1.2	10	ug/L	0.80	ND	146	70-130	2	30	05/03/24	BS	Hig
Butachlor	1.2	0.38	ug/L	0.80	ND	145	70-130	1	30	05/03/24	BS	Hig
Diazinon	0.18	0.25	ug/L	0.16	ND	113	70-130	2	30	05/03/24		
Dimethoate	8.2	10	ug/L	6.4	ND	128	70-130	1	30	05/03/24		
Metolachlor	0.92	0.50	ug/L	0.80	ND	115	70-130	1	30	05/03/24		
Metribuzin	0.96	0.50	ug/L	0.80	ND	120	70-130	2	30	05/03/24		
Molinate	0.87	2.0	ug/L	0.80	ND	109	70-130	0	30	05/03/24		
Propachlor	0.88	0.50	ug/L	0.80	ND	110	70-130	0	30	05/03/24		
Simazine	0.42	1.0	ug/L	0.56	ND	75	70-130	13	30	05/03/24		
Thiobencarb	0.85	1.0	ug/L	0.80	ND	107	70-130	1	30	05/03/24		
Surrogate: 1,3-Dimethyl-2-nitrobenzene	0.90			1.0		90	70-130			05/03/24		
Surrogate: Benzo(a)pyrene-d12	1.1			1.0		110	70-130			05/03/24		
Surrogate: Triphenyl Phosphate	1.2			1.0		115	70-130			05/03/24		
Matrix Spike (AHE0091-MS1), Source: A	AHD3193-01RE1											
Alachlor	0.20	1.0	ug/L	0.22	ND	93	70-130			05/03/24		
Atrazine	0.084	0.50	ug/L	0.11	ND	78	70-130			05/03/24		
Benzo(a)pyrene	0.016	0.10	ug/L	0.022	ND	75	70-130			05/03/24		
Bis(2-ethylhexyl) adipate	0.42	5.0	ug/L	0.43	ND	98	70-130			05/03/24		
Bis(2-ethylhexyl) phthalate	0.73	3.0	ug/L	0.65	ND	113	70-130			05/03/24		
Bromacil	0.13	10	ug/L	0.11	ND	120	70-130			05/03/24		
Butachlor	0.12	0.38	ug/L	0.11	ND	114	70-130			05/03/24		
Diazinon	0.018	0.25	ug/L	0.022	ND	81	70-130			05/03/24		
Dimethoate	1.0	10	ug/L	0.87	ND	120	70-130			05/03/24		
Metolachlor	0.11	0.50	ug/L	0.11	ND	99	70-130			05/03/24		
Metribuzin	0.12	0.50	ug/L	0.11	ND	109	70-130			05/03/24		
Molinate	0.083	2.0	ug/L	0.11	ND	77	70-130			05/03/24		
Propachlor	0.089	0.50	ug/L	0.11	ND	82	70-130			05/03/24		
Simazine	0.061	1.0	ug/L	0.076	ND	81	70-130			05/03/24		
Thiobencarb	0.098	1.0	ug/L	0.11	ND	91	70-130			05/03/24		
Surrogate: 1,3-Dimethyl-2-nitrobenzene	0.94			1.1		87	70-130			05/03/24		
Surrogate: Benzo(a)pyrene-d12	1.0			1.1		95 107	70-130			05/03/24		
Surrogate: Triphenyl Phosphate	1.2			1.1		107	70-130			05/03/24		
- / / 4/1-/		EPA 547	- Qua	lity Cont	rol					_	,	
Batch: AHD1852 Prep Method: EPA 547										Prepare A	d: 4/30 nalyst	
Blank (AHD1852-BLK1)												
Glyphosate	ND	25	ug/L							04/30/24		
• •	220		~9· -	200		110	70-130			04/30/24		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
		EPA 547			trol					
Batch: AHD1852										Prepared: 4/30/202
Prep Method: EPA 547										Analyst: YN
Blank Spike (AHD1852-BS1)										
Glyphosate	91	25	ug/L	100	ND	91	70-130			04/30/24
Surrogate: AMPA	220			200		110	70-130			04/30/24
Blank Spike Dup (AHD1852-BSD1)										
Glyphosate	98	25	ug/L	100	ND	98	70-130	8	30	04/30/24
Surrogate: AMPA	220			200		108	70-130			04/30/24
Matrix Spike (AHD1852-MS1), Source: A	HD3054-01									
Glyphosate	98	25	ug/L	100	ND	98	70-130			04/30/24
Surrogate: AMPA	230			200		113	70-130			04/30/24
Matrix Spike Dup (AHD1852-MSD1), Sou	rce: AHD3054-01									
Glyphosate	100	25	ug/L	100	ND	102	70-130	4	30	04/30/24
Surrogate: AMPA	220			200		112	70-130			04/30/24
		EPA 548.	1 - Qu	ality Cor	ntrol					
Batch: AHD1692										Prepared: 4/25/20
Prep Method: EPA 548.1										Analyst: RD
Blank (AHD1692-BLK1)										
Endothall	ND	45	ug/L							04/29/24
			J							
Blank Spike (AHD1692-BS1)										
Endothall	16	45	ug/L	20	ND	79	19-121			04/29/24
Blank Spike Dup (AHD1692-BSD1)										
Endothall	17	45	ug/L	20	ND	83	19-121	5	30	04/29/24
Matrix Spike (AHD1692-MS1), Source: A	HD3186-01									
Endothall	18	45	ug/L	20	ND	89	10-113			04/29/24
Matrix Spike (AHD1692-MS2), Source: A	HD3253-01									
Endothall	1.3	45	ug/L	20	ND	7	10-113			04/29/24 MS1.0 Lo v
		EPA 549.	2 - Qu	alitv Cor	ntrol					
Batch: AHD1605				,						Prepared: 4/25/202
Prep Method: EPA 549.2										Analyst: YN
Blank (AHD1605-BLK1)										
Diquat	ND	4.0	ug/L							05/03/24
Blank Spike (AHD1605-BS1)										
Diquat	3.8	4.0	ug/L	4.0	ND	94	70-130			05/03/24
		1.0	~g, ∟		_					
Blank Spike Dup (AHD1605-BSD1)										
he results in this report apply to the samples a ccordance with the chain of custody document						AHD32	253 Final Fl	INAL 0	5 22 20	24 1505 05222024 15

accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Organics Quality Control Report

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit		Qual
		EPA 549.	2 - Qua	lity Co	ntrol						
Batch: AHD1605				-						Prepared	l: 4/25/202
Prep Method: EPA 549.2											nalyst: YN
Blank Spike Dup (AHD1605-BSD1)											
Diquat	3.7	4.0	ug/L	4.0	ND	92	70-130	2	30	05/03/24	
4			~g/ =								
Matrix Spike (AHD1605-MS1), Source	: AHD3523-01										
Diquat	3.7	4.0	ug/L	4.0	ND	92	70-130			05/03/24	
		EPA 552.	3 - Qua	ility Coi	ntrol						
Batch: AHD1697										Prepared	l: 4/26/202
Prep Method: EPA 552.3										An	alyst: NEV
Blank (AHD1697-BLK1)											
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L							04/26/24	
Dichloroacetic Acid (DCAA)	ND	1.0	ug/L							04/26/24	
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L							04/26/24	
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L							04/26/24	
Trichloroacetic Acid (TCAA)	ND	1.0	ug/L							04/26/24	
Total Haloacetic Acids	ND	2.0	ug/L							04/26/24	
Surrogate: 2-Bromobutanoic Acid	10		- 3	10		104	70-130			04/26/24	
Duplicate (AHD1697-DUP1), Source: A	AHD3101-04										
Dibromoacetic Acid (DBAA)	ND	1.0	ug/L		ND				30	04/26/24	
Dichloroacetic Acid (DCAA)	ND	1.0	ug/L		ND				30	04/26/24	
Monobromoacetic Acid (MBAA)	ND	1.0	ug/L		ND				30	04/26/24	
Monochloroacetic Acid (MCAA)	ND	2.0	ug/L		ND				30	04/26/24	
Trichloroacetic Acid (TCAA)	ND	1.0	ug/L		ND				30	04/26/24	
Total Haloacetic Acids	ND	2.0	ug/L		ND				30	04/26/24	
Surrogate: 2-Bromobutanoic Acid	10		Ü	10		100	70-130			04/26/24	
Matrix Spike (AHD1697-MS1), Source	: AHD3101-03										
Dibromoacetic Acid (DBAA)	9.8	1.0	ug/L	10	ND	98	70-130			04/26/24	
Dichloroacetic Acid (DCAA)	9.5	1.0	ug/L	10	ND	95	70-130			04/26/24	
Monobromoacetic Acid (MBAA)	9.1	1.0	ug/L	10	ND	91	70-130			04/26/24	
Monochloroacetic Acid (MCAA)	18	2.0	ug/L	20	ND	90	70-130			04/26/24	
Frichloroacetic Acid (TCAA)	8.8	1.0	ug/L	10	ND	88	70-130			04/26/24	
Surrogate: 2-Bromobutanoic Acid	10	1.0	~g, =	10		100	70-130			04/26/24	

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals
- · Field tests are outside the scope of laboratory accreditation and there is no certification available for field testing.
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- · RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.
- (2) Formerly known as Bis(2-Chloroisopropyl) ether.
 - Unless otherwise noted, TOC results by SM 5310C method do not include purgeable organic carbon, which is removed along with the inorganic carbon interference. The POC contribution to TOC is considered to be negligible.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Definitions

mg/L: Milligrams/Liter (ppm)
mg/Kg: Milligrams/Kilogram (ppm)
μg/L: Micrograms/Liter (ppb)
μg/Kg: Micrograms/Kilogram (ppb)

%: Percent NR: Non-Reportable MDL: Method Detection Limit
RL: Reporting Limit: DL x Dilution
ND: None Detected below MRL/MDL

pCi/L: PicoCuries per Liter RL Mult: RL Multiplier

MCL: Maximum Contaminant Limit

MDA95: Min. Detected Activity
MPN: Most Probable Number
CFU: Colony Forming Unit
Absent: Less than 1 CFU/100mLs
Present: 1 or more CFU/100mLs

The analyte was not detected at or above the reported sample quantitation

limit.

U:

Please see the individual Subcontract Lab's report for applicable certifications.

The following parameters are not available for certification through CA ELAP:

Odor Diisopropyl ether (DIPE) by EPA 524.2

The following parameters are calculated values and are outside the scope of our NELAP accreditation:

Total Nitrogen Aggressive Index Trivalent Chromium

BSK is not accredited under the NELAP program for the following additional parameters:

Dichloramine (1)
Monochloramine (1)

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

_		_		_
_	ro	c	n	n
		•		v

State of California - ELAP	1180	State of Hawaii	4021
Los Angeles CSD	9254479	NELAP certified	4021-023
State of Nevada	CA000792024-03	State of Oregon - NELAP	4021-023
EPA UCMR5	CA00079	State of Washington	C997-24

Sacramento

State of California - ELAP 1180-S1

San Bernardino

State of California - ELAP 1180-S2 Los Angeles CSD 9254478

NELAP certified 4119-008 State of Oregon - NELAP 4119-008

Vancouver

NELAP certified WA100008-017 State of Oregon - NELAP WA100008-017

State of Washington C824-23b

AHD3253 Adobe3023

04/23/2024

Sample Integrity

16

BSK Bottles(Yes. Page of Was temperature within range? Were correct containers and preservatives Yes No NA Chemistry ≤ 6°C Micro < 8°C No received for the tests requested? 鲍 If samples were taken today, is there evidence Bubbles Present VOAs (524.2/TTHM/TCP)? NA Yes No NA that chilling has begun? TB Received? (Check Method Below) NA Did all bottles arrive unbroken and intact? Yes No Was a sufficient amount of sample received? No Did all bottle labels agree with COC? Do samples have a hold time <72 hours? /Yes No Yes No Was sodium thiosulfate added to CN sample(s) Was PM notified of discrepancies? Yes Yes Noc NA until chlorine was no longer present? PM: Swah dt: 1217 email can copy 250ml(A) 500ml(B) 1Liter(C) 40mlVOA(V) 125ml(D) Checks* Passed? Bacti Na₂S₂O₃ None (P)White Label 1A 41 Cr6 (P) Lt. Green Label/Blue Cap NH4OH(NH4)2SO4 DW CI, pH > 8 Cr6 (P) Pink Label/Blue Cap NH40H(NH4)2SO4 WW pH 9.3-9.7 P F Cr6 (P) Black Label/Blue Cap NH40H(NH4)2SO4 7199 pH 9.0-9.5 P F ***24 HOUR HOLD TIME** HNO₃ (P) Red Label or HQI (P) Purple Cap/Lt. Blue Label H₂SO₄ (P) or (AG) Yellow Label pH < 2 NaOH (P) Green Cap/Label PF CI, pH >10 NaOH + ZnAc (P) pH > 9 c Dissolved Oxygen 300ml (g) None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270 **Bottles Received** HCI (AG)Lt. Blue Label O&G, Diesel, TCP Ascorbic, EDTA, KH2Ct (AG)Pink Label 525 20 Na₂SO₃ 250mL (AG)Neon Green Label 515 14 Na₂S₂O₃ 1 Liter (Prown P) 549 16 Na₂S₂O₃ (AG)^{Blue Label} 548, THM, 524 A Na₂S₂O₃ (CG) Blue Label 504, 505, 547 Na₂S₂O₃ + MCAA (CG)^{Orange Label} 531 (P)F pH < 3NH₄Cl (AG)Purple Label 552 EDA (P) or (AG) Brown Label DBPs HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624 ZTB Buffer pH 4 (CG) H₃PO₄ (CG)^{Salmon Label} Trizma - EPA 537.1 Light Blue Label FB Ammonia Acetate - EPA 533 Purple Label FB **Bottled Water** Clear Glass: Jar / VOA OTHER: 125 mg Sodium Biosulfal Container Preservative Lot# Initials Date/Time Preservation Check SP pH Lot # 13691806 SP CI Lot # 12403 *Preservation check completed by lab performing analysis. ✓ Indicates Blanks Received bubbles in Comments 504 ___ 524.2 ___ TTHM ___ 537/533 ___ TCP___ ✓ MS/MSD Received Method: ______ Labeled by: Checked by:

	/ 1	
Scanned: _	u	Rush/Short HT

						,																		
Shippir	Received	Relinquis	Relinquis						U	2	٥ –	- 1	tt.			Sample	Reportir	Title	Address*:	A		AS	ПП	
Shipping Method: GES WALK-IN	Received for Lab by Signature and Demisd Name (Reinfulshed by (Signature and Printed Name)	Reinquished by (Signature and Brinted Name) My Tarkhaman Mark My Tarkhaman Mark My My Mark My M						113 301/03643/	2007/00000	SOUNG WATER	The state of the s	Sample Description* Sampled* Matrix* Comments / Station Coc	Matrix Types: SW=Surface Water BW=Bottled Water GW=0		nted/Signature)*:	Reporting Options: Trace (J-Flag) Swamp EDD Type:	Title 21	50 N. Salado Avenue, Unit 1417	Adobe Springs Water	Temp: /	ASSOCIATES www.bskassociates.com	687 N. Laverne Ave., Fresno, CA 93727 (559) 497-2888 CA ELAP No. 1180	
FED EX PMS	HOTH	Company	- Adobe S								4-01	+	Sample	Ground Water WW=Waste Wa	Madera Co	Merced Co	Regulatory Carbon Copies SWRCB (Drinking Water)	Project#	Patterson	Ray Tackaberry	C Thermometer ID:	; a	, Fresno, CA 93727 CA ELAP No. 1180	
AS Courier	Date		Ca / Ca								Bully		d* Matrix*	ter STW=Storm Water	☐ Tulare Co	Fresno Co	rbon Copies J Water)			\	5			
300	Time Payment Rece	Time Received by: (Signature	Time Received by: (Si										Comments / Station Coo	DW=Drinking Water SO	Geotracker #	System Number*:	Regulatory Compliance EDT to California SWRCB (Dri	Phase# Task#:	State*: CA	Ray Tackaberry	*Required Fields	Rush (Surcharge may apply) Date needed:	Turnaround Time Request Standard - 10 business days	
	Payment Received at Delivery: Date:	anature and Printed Name)	Received by: (Signalum and Printed Name)										le / WTRAX				ance (Drinking Water)		^{zip*:} 95363			y apply)	quest ss days	
Custody	2										>	< -	Γit	le	2	1	Or	gan	ics	(408) E-mail*:	Phone*:			
Chilling Bronges Re	Amount										>	<	Γit	le	21		nor	gar	nics	(408) 897-3023 E-mail*: ray@ad			AHD3253	
											>	<	Γit	le	2	1	Ext	tern	als	023)ado			3253 1253	
< Z	<u>9</u>								-		>	۱ <u>></u>	3r	O	m	а	te			besp			Adohe3023	
	PIA#	0	S _O				-	+		-	>		3r	O	m	IC	ie	rgar tern		rings	Fax		£3023	
	Check	Company	Company		+					-	7	K E	- X I	-E	:PA	52	21,	4-DI0	xane	.com			(+C)	
	Injt.									+		+								_			04/23/2024	
	Cash									+												-		

Shipping Method: GLS

Wig. Bius None

Cooling Method: Vig. Bius None

Chilling Process Begun: Y / N

Cooling Method: The person sign of the Client Company

Brayment for sevices sendered as not within 30 days from the date invoiced. If not a paid, aboout a balances are dumed definquent Desirquent balances are subject to mostly services that they are either the client of an authorized agent to the Client, that the Client agrees to be responsible for payment for the services on this Chain of Custody, and agrees to BSK's terms and conditions for laboratory services unless contractually bound afterwise. BSK's current terms and conditions can be found at SR-FL-00124

WWW bekassocieres comf854(Leb TermsConditions put SR-FL-0012-09

Ceres ID: 17784

April 30, 2024

BSK Associates 1414 Stanislaus St. Fresno, CA 93706

The following report contains the results for the one drinking water sample received on April 24, 2024. This sample was analyzed for 2,3,7,8-TCDD by EPA method 1613. Routine turn-around time was provided for this work.

This work was authorized under your Subcontract Order # AHD3253.

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

The report consists of a Cover Letter, Sample Inventory (Section I), Data Summary (Section II), Sample Tracking (Section VI), and Qualifiers/Abbreviations (Section VII). Raw Data (Section III), Continuing Calibration (Section IV), and Initial Calibration (Section V) are available in a full report (.pdf format) upon request.

If you have any questions regarding this report, please feel free to contact me at (916)932-5011.

Sincerely,

James M. Hedin

Director of Operations/CEO

jhedin@ceres-lab.com

Section I: Sample Inventory

Ceres Sample ID:

17784-001

Spring Water AHD3253-01

<u>Date Received</u> 4/24/2024

Collection Date & Time

4/23/2024 8:00

Section II: Data Summary

EPA Method 1613

Quality Assurance SampleCeres Sample ID: 0-3151-MBDate Received: NAMethod BlankQC Batch #: 3151Date Extracted: 4/29/2024Matrix: Drinking WaterDate Analyzed: 4/29/2024Project ID: AHD3253Sample Size: 1.000 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	ND< 3.52	4.10	5.00		13C-2378-TCDD	86.3	31-137	
					<u>CRS</u>			
					37CI4-2378-TCDD	103	42-164	
					EMPC - Estimated Maxim	um Possible (Concentration due to	ion abundance
					ratio failure.	l		
					(a) - Lower control limit - U	pper control I	imit	

Analyst: JMH Reviewed by: BS

EPA Method 1613

Quality Assurance SampleCeres Sample ID: 0-3151-OPRDate Received: NAOngoing Precision and RecoveryQC Batch #: 3151Date Extracted: 4/29/2024Matrix: Drinking WaterDate Analyzed: 4/29/2024Project ID: AHD3253Sample Size: 1.000 L

Analyte	Conc. (ng/mL)	Limits (a)	Labeled Standards	% Rec.	Limits (a)
2,3,7,8-TCDD	9.27	7.3-14.6	13C-2378-TCDD	75.0	25-141
			<u>CRS</u>		
			37Cl4-2378-TCDD	92.2	37-158
			(a) Limits based on method	acceptance criteria.	

Analyst: JMH Reviewed by: BS

EPA Method 1613

 Client Sample ID: Spring Water AHD3253-01

 Project ID: AHD3253
 Ceres Sample ID: 17784-001
 Date Received: 4/24/2024

 QC Batch #: 3151
 Date Extracted: 4/29/2024

 Date Collected: 4/23/2024
 Matrix: Drinking Water
 Date Analyzed: 4/29/2024

 Time Collected: 8:00
 Sample Size: 1.018 L
 1.018 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	ND < 2.99	4.10	4.91		13C-2378-TCDD	84.6	31-137	
					<u>CRS</u> 37Cl4-2378-TCDD	89.5	42-164	
					EMPC - Estimated Maxim ratio failure. (a) - Lower control limit - l			e to ion abundance

Analyst: JMH Reviewed by: BS

Section VI: Sample Tracking

SUBCONTRACT ORDER AHD3253

SENDING LABORATORY:

BSK Associates Laboratory Fresno 687 N. Laverne Avenue Fresno, CA 93727

Phone: 559-497-2888 Fax: 559-485-6935

Project Manager: Sarah K. Guenther

E-mail: sguenther@bskassociates.com

RECEIVING LABORATORY:

Ceres Analytical Laboratory, Inc 4919 Windplay Drive, Suite 1 El Dorado Hills, CA 95762 Phone :(916) 932-5011

Fax: -

Turnaround (Days): Standard QC Deliverables: I Std III IV

SEND INVOICE TO:

sguenther@bskassociates.com

ap@bskassociates.com

Sample ID Samp Desc Sample Date

AHD3253-01 Spring Water

Client Matrix Water

04/23/2024 08:00

Sampled By: Ray Tackaberry

Lab Matrix: Water

Analysis:

EXT-Dioxin-DW matrix, EPA 1613 2,3,7,8-TCDD

State Forms: No

System Name:

Released By Date

Received By

Date

Date

Sample Receipt Check List Logged by: 11 (initials)

Ceres ID: 177811-		Date/Time: 4/24/24 11:02
Client Project ID: AHD 3253		Received Temp: 4.2°C Acceptable: Ø/N
Chain of Custody Relinquished by signed?		Ø /N
Chain of Custody Received by signed?		(A)/ N
Custody Seals?	Present?	Y/N
	Intact?	Y/N
	NA:	® A
Unlabeled / Illegible Samples	1	Y /N
Proper Containers:		Ø/ N
Preservation Acceptable (Chemical or Temperat	ture)?	(X) N
Drinking Water, Sodium Thiosulfate present? Residual Cl? Aqueous sample pH:		Y / N/ NA Y / N/ NA NA
List COC discrepancies: List Damaged Samples:		
*	<i>h</i>	

Effective Date: 3/19/18

Page 37 of 73

Section VII: Qualifiers/Abbreviations

J Concentration found below the lower quantitation limit but greater

than zero.

B Analyte present in the associated Method Blank.

E Concentration found exceeds the Calibration range of the

HRGC/HRMS.

D This analyte concentration was calculated from a dilution.

X The concentration found is the estimated maximum possible

concentration due to chlorinated diphenyl ethers present in the

sample.

H Recovery limits exceeded. See cover letter.

* Results taken from dilution.

I Interference. See cover letter.

Conc. Concentration Found

DL Calculated Detection Limit

ND Non-Detect

% Rec. Percent Recovery

ANALYTICAL REPORT

PREPARED FOR

Attn: Sarah K Guenther BSK Associates 687 N. Laverne Avenue Fresno, California 93727

Generated 5/1/2024 4:13:09 PM

JOB DESCRIPTION

AHD3253

JOB NUMBER

380-92752-1

Eurofins Eaton Analytical Pomona 941 Corporate Center Drive Pomona CA 91768-2642

Eurofins Eaton Analytical Pomona

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Eaton Analytical, LLC Project Manager.

Compliance Statement

- 1. Laboratory is accredited in accordance with TNI 2016 Standards and ISO/IEC 17025:2017.
- 2. Laboratory certifies that the test results meet all TNI 2016 and ISO/IEC 17025:2017 requirements unless noted under the individual analysis
- 3. Test results relate only to the sample(s) tested.
- 4. This report shall not be reproduced except in full, without the written approval of the laboratory.
- 5. Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. (DW, Water matrices)

Authorization

Generated 5/1/2024 4:13:09 PM

Authorized for release by Anisha Zachariah, Project Manager Anisha.Zachariah@et.eurofinsus.com (626)386-1142

Eurofins Drinking Water Testing Pomona is a laboratory within Eurofins Eaton Analytical, LLC, a company within Eurofins Environment Testing Group of Companies

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receint Checklists	15

Definitions/Glossary

Client: BSK Associates Job ID: 380-92752-1 Project/Site: AHD3253

Qualifiers

General Chemistry

Qualifier Description F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Qualifier

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: BSK Associates
Project: AHD3253

Job ID: 380-92752-1 Eurofins Eaton Analytical Pomona

Job Narrative 380-92752-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 4/24/2024 10:17 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 6.2°C.

Receipt Exceptions

The following sample was received at the laboratory outside the required temperature criteria: AHD3253-01 Spring Water (380-92752-1). This does not meet regulatory requirements. The client was contacted regarding this issue, and the laboratory was instructed to proceed with analysis.

Received out of temp. 6.2°C blue ice

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

2

Job ID: 380-92752-1

3

4

5

8

9

. .

12

13

Detection Summary

Client: BSK Associates Job ID: 380-92752-1

Project/Site: AHD3253

Client Sample ID: AHD3253-01 Spring Water

Lab Sample ID: 380-92752-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Phenols, Total	0.59 J	1.0	0.50 ug/L	1 420.4	Total/NA

4

6

8

9

4 4

12

13

Client Sample Results

Client: BSK Associates Job ID: 380-92752-1

Project/Site: AHD3253

Client Sample ID: AHD3253-01 Spring Water Lab Sample ID: 380-92752-1

Date Collected: 04/23/24 08:00 Lab Sample 1D. 300-327 32-1

Date Received: 04/24/24 10:17

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenols, Total (EPA 420.4)	0.59	J	1.0	0.50	ug/L		04/29/24 11:40	04/30/24 16:02	1

Ш

_4

5

ا

9

11

13

Job ID: 380-92752-1 Client: BSK Associates

Project/Site: AHD3253

Method: 420.4 - Phenolics, Total Recoverable

Lab Sample ID: MB 380-88141/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 88489	Prep Batch: 88141
MB MB	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenols, Total	ND		1.0	0.50	ug/L		04/29/24 11:40	04/30/24 15:38	1

Lab Sample ID: LCS 380-88141/3-A				Cile	ent Sar	חו npie	: Lab Con	troi Sample
Matrix: Water							Prep Typ	e: Total/NA
Analysis Batch: 88489							Prep B	atch: 88141
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phenols Total	5.00	5.08		ua/l		102	90 110	

Lab Sample ID: LCSD 380-88141/4-A	Client Sample ID: Lab Control Sample Dup									
Matrix: Water	Prep Type: Total/NA									
Analysis Batch: 88489							Prep E	Batch: 8	38141	
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Phenols, Total	5.00	4.73		ug/L		95	90 - 110	7	20	

Lab Cample ID. MIKE 300-00141/2-A				Olic	nit Oai	TIPIC ID	. Lab Com	ti oi oainpie
Matrix: Water							Prep Typ	e: Total/NA
Analysis Batch: 88489							Prep Ba	atch: 88141
	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phenols, Total	1.00	1.48		ug/L		148	50 - 150	

Lab Sample ID: 380-89984-	Lab Sample ID: 380-89984-M-1-B MS								Client Sample ID: Matrix S						
Matrix: Water									Prep Ty	pe: Total/NA					
Analysis Batch: 88489									Prep E	Batch: 88141					
-	Sample	Sample	Spike	MS	MS				%Rec						
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits						
Phonois Total	ND	F2 F1	5.00	5 24		ua/l		105	90 110						

Lab Sample ID: 380-89984-	Client Sample ID: Matrix Spike Duplic										
Matrix: Water		Prep Type: Total/NA									
Analysis Batch: 88489			Prep Batch: 88141								
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Phenols, Total	ND	F2 F1	5.00	6.46	F1 F2	ug/L		129	90 - 110	21	20

QC Association Summary

Client: BSK Associates

Job ID: 380-92752-1

Project/Site: AHD3253

General Chemistry

Prep Batch: 88141

Lab Sample ID 380-92752-1	Client Sample ID AHD3253-01 Spring Water	Prep Type Total/NA	Matrix Water	Method 420.1 Distillat	Prep Batch
MB 380-88141/1-A	Method Blank	Total/NA	Water	420.1 Distillat	
LCS 380-88141/3-A	Lab Control Sample	Total/NA	Water	420.1 Distillat	
LCSD 380-88141/4-A	Lab Control Sample Dup	Total/NA	Water	420.1 Distillat	
MRL 380-88141/2-A	Lab Control Sample	Total/NA	Water	420.1 Distillat	
380-89984-M-1-B MS	Matrix Spike	Total/NA	Water	420.1 Distillat	
380-89984-M-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	420.1 Distillat	

Analysis Batch: 88489

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-92752-1	AHD3253-01 Spring Water	Total/NA	Water	420.4	88141
MB 380-88141/1-A	Method Blank	Total/NA	Water	420.4	88141
LCS 380-88141/3-A	Lab Control Sample	Total/NA	Water	420.4	88141
LCSD 380-88141/4-A	Lab Control Sample Dup	Total/NA	Water	420.4	88141
MRL 380-88141/2-A	Lab Control Sample	Total/NA	Water	420.4	88141
380-89984-M-1-B MS	Matrix Spike	Total/NA	Water	420.4	88141
380-89984-M-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	420.4	88141

3

4

6

8

0

10

11

12

13

1.

Lab Chronicle

Client: BSK Associates Job ID: 380-92752-1

Project/Site: AHD3253

Client Sample ID: AHD3253-01 Spring Water

Date Collected: 04/23/24 08:00 Matrix: Water

Date Received: 04/24/24 10:17

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	420.1 Distillat			88141	MIA8	EA POM	04/29/24 11:40
Total/NA	Analysis	420.4		1	88489	MIA8	EA POM	04/30/24 16:02

Laboratory References:

EA POM = Eurofins Eaton Analytical Pomona, 941 Corporate Center Drive, Pomona, CA 91768-2642, TEL (626)386-1100

J

Lab Sample ID: 380-92752-1

5

6

8

40

11

13

Accreditation/Certification Summary

Client: BSK Associates

Job ID: 380-92752-1

Project/Site: AHD3253

Laboratory: Eurofins Eaton Analytical Pomona

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority California	Progra State	am	Identification Number 2813	Expiration Date 06-18-25
0 ,	s are included in this repo does not offer certification	•	not certified by the governing authori	ity. This list may includ
Analysis Method	Prep Method	Matrix	Analyte	
420.4	420.1 Distillat	Water	Phenols, Total	

3

4

^

9

10

12

- 10

Method Summary

Client: BSK Associates Project/Site: AHD3253

Job ID: 380-92752-1

Method	Method Description	Protocol	Laboratory
420.4	Phenolics, Total Recoverable	EPA	EA POM
420.1 Distillat	Distillation/Phenolics	EPA	EA POM

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EA POM = Eurofins Eaton Analytical Pomona, 941 Corporate Center Drive, Pomona, CA 91768-2642, TEL (626)386-1100

9

4

_

7

8

40

11

Sample Summary

Client: BSK Associates Job ID: 380-92752-1 Project/Site: AHD3253

Lab Sample ID **Client Sample ID** Matrix Collected Received 04/23/24 08:00 04/24/24 10:17 380-92752-1 AHD3253-01 Spring Water Water

SUBCONTRACT ORDER AHD3253

380-92752 COC

SENDING LABORATORY:

BSK Associates Laboratory Fresno 687 N. Laverne Avenue Fresno, CA 93727

Phone: 559-497-2888 Fax: 559-485-6935

Project Manager: Sarah K. Guenther E-mail: sguenther@bskassociates.com

RECEIVING LABORATORY:

Eurofins Eaton Analytical - Pomona 941 Corporate Center Drive Pomona, CA 91768 Phone :(626) 386-1100

Fax: -

Turnaround (Days): Standard QC Deliverables: I Std III IV

SEND INVOICE TO:

sguenther@bskassociates.com

ap@bskassociates.com

Sample ID	Samp Desc			Sample Date
AHD3253-01	Spring Water		Client Matrix Water Sampled By: Ray Tackaberry	04/23/2024 08:00
Lab Matrix:	Water		, , , ,	
	Analysis: EXT-Phenolics Low Le	vel	-	
State Forms:	No	System Name:		

(7524) 6.4-02-6.2 961-Frozen UPS: 1293×9210379075893

Released By

Date

Received By

Madeurutia

1017

Page 14 of 15

Client: BSK Associates Job Number: 380-92752-1

Login Number: 92752 List Source: Eurofins Eaton Analytical Pomona

List Number: 1 Creator: Edrosa, Rey

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

4

5

7

9

11

13

FINAL REPORT

Work Order 4D24106

Project Name: BSK Analytical Laboratories

Project Number: AHD3253

P.O. #:

Report Date: 5/08/2024

Received Date: 4/24/2024 10:44 am

Turnaround Time: Normal

Billing Code:

Attn: Sarah Guenther

Client: BSK Analytical Laboratories - Fresno

687 N. Laverne Avenue Fresno, CA 93727

Phones:

Fax:

(559) 497-2888 (559) 485-6935

Sample Results

Sample: AHD3253-01, Alias: Spring Water

4D24106-01 (Water) Sampled: 04/23/24 8:00 by Ray Tackaberry

Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
1,4-Dioxane by SPE/GCMS SIN	Л, EPA Method 522							
Method: EPA 522 Batch ID: W4D2311	Preparation: EPA 522/SPE			Instr: GCMS Prepared: 0-		2		Analyst: mld
1,4-Dioxane Surrogate(s)		ND		0.070	ug/l	1	05/06/24	
1,4-Dioxane-d8		73%		70-130	Conc:	7.27	05/06/24	
Conventional Chemistry/Phys	ical Parameters by APHA/EPA/A	ASTM Me	thods					
Method: SM 4500ClO2-D				Instr: UVVIS	05			
Batch ID: W4D2092	Preparation: _NONE (WETC	HEM)		Prepared: 0	4/24/24 16:54	1		Analyst: jls
Chlorine Dioxide as ClO2		ND		0.095	mg/l	1	04/24/24	*

FINAL REPORT

Quality Control Results

1,4-Dioxane by SPE/GCMS SIM, EPA Method 522

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Batch: W4D2311 - EPA 522/SPE										
Blank (W4D2311-BLK1)			Prepared	d: 04/29/24	Analyze	ed: 05/0	06/24			
1,4-Dioxane	ND	0.070	ug/l							
Surrogate(s)										
1,4-Dioxane-d8	7.60		ug/l	10.0	A l	76	70-130			
LCS (W4D2311-BS1)				d: 04/29/24	Anaiyze					
1,4-Dioxane	2.26	0.070	ug/l	2.00		113	70-130			
Surrogate(s)										
1,4-Dioxane-d8	9.48		ug/l	10.0		95	70-130			
LCS Dup (W4D2311-BSD1)			Prepared	d: 04/29/24	Analyze	ed: 05/0	06/24			
1,4-Dioxane	1.89	0.070	ug/l	2.00		95	70-130	18	30	
Surrogate(s)										
1,4-Dioxane-d8	7.91		ug/l	10.0		79	70-130			
Conventional Chemistry/Physi	ical Parame	eters by A	PHA/EI	PA/ASTM	1 Meth	ods				
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W4D2092NONE (WETCHEM)										
Blank (W4D2092-BLK1)			Prep	pared & Ana	alyzed: 0	4/24/2	4			
Chlorine Dioxide as CIO2	ND	0.095	mg/l							
LCS (W4D2092-BS1)			٥.	pared & Ana	alyzed: 0	4/24/2	4			
Chlorine Dioxide as CIO2	0.329	0.095	mg/l	0.380		87	85-110			
Duplicate (W4D2092-DUP1)	Source: 4	D24106-01	Prep	pared & Ana	alyzed: 0	4/24/2	4			
Chlorine Dioxide as CIO2	0.0209	0.095	mg/l		0.0266			24	15	R-03
Matrix Spike (W4D2092-MS1)	Source: 4	D24106-01	Prep	pared & Ana	alyzed: 0	4/24/2	4			
Chlorine Dioxide as CIO2	0.315	0.095	mg/l	0.380	0.0266	76	82-114			MS-01
	Source: 4	D24106-01	Prep	pared & Ana	alyzed: 0	4/24/2	4			
Chlorine Dioxide as CIO2	0.312	0.095	mg/l	0.380	0.0266	75	82-114	1	15	MS-01
			-							

Notes and Definitions

ltem	Definition
*	The recommended holding time for this analysis is only 15 minutes. The sample was analyzed as soon as it was possible but it was received and analyzed past holding time.
MS-01	The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.
R-03	The RPD is not applicable for result below the reporting limit (either ND or J value).
%REC	Percent Recovery
Dil	Dilution
MRL	Method Reporting Limit (MRL) is the minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference
Source	Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance. All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Analyses Accreditation

		Not By	Not By	Not By
Analyte	CAS #	ELAP-CA	NELAP	ANAB ISO 17025

SM 4500ClO2-D in Water

Chlorine Dioxide as CIO2 10049-04-4

This laboratory report may contain results for target analytes that are not currently certifiable by the California Environmental Laboratory Accreditation Program (ELAP). ELAP is the state agency that accredits environmental testing laboratories in Californiahttps://www.waterboards.ca.gov/drinking_water/certlic/labs/index.html. ELAP certification is required for laboratories that perform testing for regulatory purposes, such as drinking water, wastewater, hazardous waste, and ambient waterhttps://www.waterboards.ca.gov/drinking_water/certlic/labs/apply.html. However, ELAP does not certify all analytes or methods that a laboratory may offer. Therefore, some of the target analytes in this report may not have been tested under ELAP-approved methods or quality control procedures. The results for these analytes are provided for informational purposes only and should not be usea for regulatory compliance or decision making. Please contact the laboratory if you have any questions or concerns about the report.

Reviewed by:

Natalie M. Verne For Tiffany T. Felix

Project Manager

Dod-Elap anab #ade-2882 • Dod-Iso anab # • Elap-Ca #1132 • Epa-Ucmr #ca00211 • Iso17025 anab #l2457.01 • Lacsd #10143 • Nelap-Or #4047 • NJ-Dep #ca015 • NV-Dep #nac 445a • Scaqmd #93la1006

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. The report may include analytes that are not currently accreditable by some state agencies or accrediting bodies. This analytical report must be reproduced in its entirety.

SUBCONTRACT ORDER AHD3253

4224106

SENDING LABORATORY:

BSK Associates Laboratory Fresno

687 N. Laverne Avenue Fresno, CA 93727

Phone: 559-497-2888 Fax: 559-485-6935

Project Manager: Sarah K. Guenther

E-mail:

sguenther@bskassociates.com

RECEIVING LABORATORY:

Weck Laboratories, Inc. 14859 E Clark Avenue

City of Industry, CA 91745-1396

Phone :(626) 336-2139 Fax: (626) 336-2634

Turnaround (Days): Standard QC Deliverables: I Std III IV **SEND INVOICE TO:**

sguenther@bskassociates.com

ap@bskassociates.com

Sample ID	Samp Desc			Sample Date
AHD3253-01	Spring Water		Client Matrix Water Sampled By: Ray Tackaberry	04/23/2024 08:00
Lab Matrix:	Water		,	
	Analysis:			
	EXT-Chlorine Dioxid	de (24HR HT)		
	EXT-EPA 522 1,4-D	ioxane		
State Forms:	No	System Name:		

Released By Date Released By

Sample Receipt Checklist

	Weck WKO:	4D24106		Date	/Time Received	: 04/24/24 10:44
	WKO Logged by:	Jaime Gomez			# of Samples	: 01
Sam	ples Checked by:	Jaime Gomez			Delivered by	: UPS
	Task	作的 指数数 医化学性 不能	Yes	No	N/A	Comments
	COC present at r	eceipt?			•	
	COC properly co	•	\boxtimes		-	
ე ე	COC matches sar					
	Project Manager	notified about COC discrepancy?			⊠	
	Sample Tempera	ture	2.6 °C			
	Samples received		⊠		-	
ion	Ice Type (Blue/W				-	
nat	All samples intac	•	\boxtimes		-	
orn	Samples in prope		\boxtimes		-	
Inf	Sufficient sample		\boxtimes		-	
ipt	Samples intact?		\boxtimes		-	
Receipt Information	Received within	holding time?	\boxtimes		-	
	Project Manager	notified about receipt info?		\boxtimes		
	Sample labels ch	ecked for correct preservation?				
					_	
servation Verification?		(No) none, If Yes (see comment) 3.1, 8260, 1666 P/T, LUFT			⊠ -	□<6mm/Pea Size?
erific	pH verified upon				-	pH paper Lot# 310689
tion V	Metals <2; H2SO4 525.2<2, 6710B<	4 pres tests <2; 522<4; TOC <2; 508.1, 2, 608.3 5-9	\boxtimes			
	Free Chlorine Tes	ted <0.1 (Organics Analyses)	\boxtimes			Cl Test Strip Lot# 032R325
Sample Pre	O&G pH <2 verifi	ed?				pH paper Lot#
am						pH Reading:
S	pH adjusted for C	O&G			-	Acid Lot#
	Project Manager	notified about sample preservation?				Amt added:
PM Co	mments					
Sample	e Receipt Checkli	st Completed by:				
Signat	•	•			Date:	04/24/24

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2405619

Report Created for: BSK Analytical Laboratories

687 N. Laverne Ave Fresno, CA 93727

Project Contact: Sarah K. Guenther

Project P.O.:

Project: AHD3253

Project Location:

Project Received: 05/08/2024

Analytical Report reviewed & approved for release on 05/15/2024 by:

Christine Askari

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: BSK Analytical Laboratories WorkOrder: 2405619

Project: AHD3253

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

SPK Val Spike Value

Page 2 of 9

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Page 61 of 73

Glossary of Terms & Qualifier Definitions

Client: BSK Analytical Laboratories WorkOrder: 2405619

Project: AHD3253

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC).

(Adjustment for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: BSK Analytical Laboratories

Date Received: 05/08/2024 10:24 **Date Prepared:** 05/13/2024

Project: AHD3253

WorkOrder: 2405619 Extraction Method: E531.1 Analytical Method: E531.1

Unit: $\mu g/L$

Carbamates by HPLC with Derivatization											
Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID					
AHD3253-01 Spring Water	2405619-001A	Water	04/23/202	4 08:00	HPLC1 051324000019.D	293620					
Analytes	Result		<u>RL</u>	<u>DF</u>	<u>Dat</u>	e Analyzed					
3-Hydroxycarbofuran	ND		2.0	1	05/	14/2024 05:21					
Aldicarb (Temik)	ND		2.0	1	05/	14/2024 05:21					
Aldicarb sulfoxide	ND		2.0	1	05/	14/2024 05:21					
Aldoxycarb (Aldicarb Sulfone)	ND		2.0	1	05/	14/2024 05:21					
Carbaryl (Sevin)	ND		2.0	1	05/	14/2024 05:21					
Carbofuran (Furadan)	ND		2.0	1	05/	14/2024 05:21					
Methiocarb (Mesurol)	ND		2.0	1	05/	14/2024 05:21					
Methomyl (Lannate)	ND		2.0	1	05/	14/2024 05:21					
Oxamyl	ND		2.0	1	05/	14/2024 05:21					
Propoxur (Baygon)	ND		2.0	1	05/	14/2024 05:21					
Surrogates	REC (%)		<u>Limits</u>								
BDMC	91		65-135		05/	14/2024 05:21					
Analyst(s): HAD											

Quality Control Report

Client: BSK Analytical Laboratories

Date Prepared:05/13/2024Date Analyzed:05/13/2024Instrument:HPLC1

Matrix: Drinking Water

Project: AHD3253

WorkOrder: 2405619

BatchID: 293620

Extraction Method: E531.1 **Analytical Method:** E531.1

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-293620

QC Summary	Report for	E531.1
------------	------------	--------

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
3-Hydroxycarbofuran	ND	1.2	2.0	-	-	-
Aldicarb (Temik)	ND	1.3	2.0	-	-	-
Aldicarb sulfoxide	ND	1.2	2.0	=	-	-
Aldoxycarb (Aldicarb Sulfone)	ND	1.2	2.0	=	-	-
Carbaryl (Sevin)	ND	1.4	2.0	=	-	-
Carbofuran (Furadan)	ND	1.2	2.0	=	-	-
Methiocarb (Mesurol)	ND	1.0	2.0	=	-	-
Methomyl (Lannate)	ND	0.83	2.0	=	-	-
Oxamyl	ND	1.1	2.0	-	-	-
Propoxur (Baygon)	ND	0.87	2.0	-	-	-

Surrogate Recovery

BDMC 85 100 85 80-120

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
3-Hydroxycarbofuran	46	45	50	91	90	80-120	1.41	20
Aldicarb (Temik)	49	48	50	98	96	80-120	2.05	20
Aldicarb sulfoxide	46	46	50	92	91	80-120	1.45	20
Aldoxycarb (Aldicarb Sulfone)	46	45	50	92	90	80-120	1.68	20
Carbaryl (Sevin)	46	46	50	92	91	80-120	0.874	20
Carbofuran (Furadan)	48	48	50	96	96	80-120	0.850	20
Methiocarb (Mesurol)	45	44	50	89	87	80-120	2.02	20
Methomyl (Lannate)	48	48	50	97	95	80-120	1.63	20
Oxamyl	46	45	50	92	90	80-120	1.41	20
Propoxur (Baygon)	47	47	50	94	93	80-120	1.42	20
Surrogate Recovery								
BDMC	85	85	100	85	85	80-120	0.446	20

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Excel

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 2405619 WaterTrax CLIP □ EDF ■ EQuIS Dry-Weight

ClientCode: BSKF ✓ Email **QuoteID: 243145**

Detection Summary Bill to:

Requested TAT:

☐ ThirdParty

Report to: Sarah K. Guenther

Email:

squenther@bskassociates.com; jdella@bs Accounts Payable 5 days;

BSK Analytical Laboratories

cc/3rd Party:

AHD3253

BSK Analytical Laboratories

Date Received: 05/08/2024

687 N. Laverne Ave

PO:

687 N. Laverne Ave

Fresno, CA 93727 (559) 497-2888 FAX: (559) 485-6935

Project:

Fresno, CA 93727

Date Logged: 05/08/2024

ap@bskassociates.com

				Requested Tests (See legend below)												
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
							•	•	•		•					
2405619-001	AHD3253-01 Spring Water	Water	4/23/2024 08:00		Α	Α										

Test Legend:

1 531_1_W	2 PRDisposal	Fee 3	4	
5	6	7	8	
9	10	11	12	

Project Manager: Yen Cao Prepared by: Natalie Zaragoza

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	BSK ANALYTICAL LABORATORIES	Project: AHD3253	Work Order: 2405619
--------------	-----------------------------	-------------------------	----------------------------

Client Contact: Sarah K. Guenther

QC Level: LEVEL 2

Contact's Email: sguenther@bskassociates.com; jdella@bskassociates.com Comments: Date Logged: 5/8/2024

		Water	rax CLIP EDF		Excel	EQuIS	√ Ema	ailHardCopy	Third	dParty	g	
LabID	ClientSampID	Matrix	Test Name	Cont./ Comp.	Bottle & Preservative		d Dry- ce Weight	Collection Date t & Time	TAT	Test Due Date	Sediment Content	Sub Out
001A	AHD3253-01 Spring Water	Water	E531.1 (Carbamates) <3- Hydroxycarbofuran, Aldicarb (Temik), Aldicarb sulfoxide, Aldoxycarb (Aldicarb Sulfone), Carbaryl (Sevin), Carbofuran (Furadan), Methiocarb (Mesurol), Methomyl (Lannate), Oxamyl, Propoxur (Baygon)>	1	VOA, MCAA Na2SO3	+ 🗌 🗆		4/23/2024 8:00	5 days	5/15/2024	None	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

6195966

 $9 \log 8$ of 9

Page 4 of 5

Date

АНD3253 АНD3253

State Forms: No

f.168 A93

1293X9210379152951

Released By

Released By

Date

System Name:

\overline{A}	:sisylsnA			
Vab Matrix: V	Water			
AHD3253-01 S	Spring Water		Client Matrix Water Sampled By: Ray Tackaberry	04/23/2024 08:00
Sample ID S	дяшь Дегс		Comments	Sample Date
687 N. Laverne Fresno, CA 937 Phone: 559-497 Fax: 559-485-69 Project Manager:	7272 97-2888	McCampbell Analytical, Inc. 1534 Willow Pass Road Pittsburg, CA 94565-1701 Phone :(925) 252-9269 Eax: (925) 252-9269 Turnaround (Days): Standard QC Deliverables: I Std III	sb@pskas	enther@bskassociates.com @bskassociates.com
SENDING LABO	:YROTARO	RECEIVING LABORATORY:	SEND INAC	ID INVOICE TO:

Quote 243145

Sample Receipt Checklist

Client Name: Project:	BSK Analytical L AHD3253	aboratories			Date and Time Received Date Logged: Received by:	: 5/8/2024 10:24 5/8/2024 Natalie Zaragoza
WorkOrder №: Carrier:	2405619 <u>UPS</u>	Matrix:			Logged by:	Natalie Zaragoza
		Chain of	Custody	/ (COC) Info	<u>ormation</u>	
Chain of custody	present?		Yes	✓	No 🗌	
Chain of custody	signed when relind	quished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with samp	e labels?	Yes	✓	No 🗆	
Sample IDs note	ed by Client on COC	??	Yes	✓	No 🗆	
Date and Time o	of collection noted b	y Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?		Yes	✓	No 🗆	
COC agrees with	n Quote?		Yes	✓	No 🗆	NA \square
		<u>Sam</u> r	ole Rece	eipt Informa	<u>ition</u>	
Custody seals in	tact on shipping co	ntainer/cooler?	Yes		No 🗌	NA 🗸
Custody seals in	tact on sample bot	les?	Yes		No 🗆	NA 🗸
Shipping contain	er/cooler in good c	ondition?	Yes	✓	No 🗆	
Samples in prop	er containers/bottle	s?	Yes	✓	No 🗆	
Sample containe	ers intact?		Yes	✓	No 🗌	
Sufficient sample	e volume for indicat	ed test?	Yes	✓	No 🗆	
		Sample Preservat	ion and	Hold Time	(HT) Information	
All samples rece	eived within holding	time?	Yes	✓	No 🗌	NA 🗌
Samples Receive	ed on Ice?		Yes	✓	No 🗌	
		(Ice Typ	oe: WE	TICE)		
Sample/Temp Bl	lank temperature			Temp: 0	.4°C	NA 🗆
ZHS conditional requirement (VO	analyses: VOA me Cs, TPHg/BTEX, F	ets zero headspace SK)?	Yes		No 🗌	NA 🗹
Sample labels ch	hecked for correct p	reservation?	Yes	✓	No 🗌	
pH acceptable u <2; 522: <4; 218		<2; Nitrate 353.2/4500NO3:	Yes		No 🗆	NA 🗹
UCMR Samples: pH tested and 537.1: 6 - 8)?		eceipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹
Free Chlorine for applicable		ble upon receipt (<0.1mg/L)	Yes		No 🗆	NA 🗹
Comments:	=====	=======	==:		:======:	

May 14, 2024 Lab No. : SP 2406234 Customer No. : 2022939

BSK Associates Engineers & Laboratories

687 N. Laverne Ave. Fresno, CA 93727

Laboratory Report

Introduction: This report package contains a total of 3 pages divided into 3 sections:

Case Narrative : An overview of the work performed at FGL. (1 page)

Sample Results (1 page) : Results for each sample submitted. Quality Control : Supporting Quality Control (QC) results. (1 page)

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab No.	Matrix
Spring Water	04/23/2024	04/24/2024	SP 2406234-001	W

Sampling and Receipt Information:

The Sample was received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. The Sample was received, prepared and analyzed within the method specified holding times. All samples arrived at 17 ° C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the associated Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to established quality control criteria. Any exceptions are noted in the Quality Control Section of this report.

Test Summary	
EPA 900.0	Preparation and analysis performed by FGL-Santa Paula (FGL-SP ELAP# 1573)
EPA 903.0	Preparation and analysis performed by FGL-Santa Paula (FGL-SP ELAP# 1573)
EPA RA-05	Preparation and analysis performed by FGL-Santa Paula (FGL-SP ELAP# 1573)

Certification: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above and in the OC Section. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature. This report shall not be reproduced except in full, without the written approval of the laboratory.

KD: KVC

Approved By David Terz, B.A., M.B.A. Title: QA Director

Section: Case Narrative Page 1 of 3 Page 1 of 3

Corporate Offices & Laboratory

May 14, 2024

Description:

BSK Associates Engineers & Laboratories

687 N. Laverne Ave. Fresno, CA 93727

Spring Water

Project AHD3253 Lab No. : SP 2406234-001

Customer No.: 2022939

Sampled On : April 23, 2024 at 08:00

Sampled By : Ray Tackaberry

Received On : April 24, 2024 at 10:00

Matrix : Water

Sample Results - Radio

Result ± Error	MDA	Units	MCL/AL	DQF	Sample Preparation			Sample Analysis			
					Date	Time	Who	Method	Date	Time	Who
0.593 ± 0.362	0.187	pCi/L	15/5		05/07/2024	07:45	amr	EPA 900.0	05/09/2024	11:12	amr
5.59 ± 0.762	0.0913	pCi/L		h	05/07/2024	07:45	amr	EPA 900.0	05/09/2024	11:12	amr
0.176 ± 0.229	0.410	pCi/L			05/06/2024	18:20	emv	EPA 903.0	05/08/2024	09:44	amr
0.129 ± 0.916	0.0506	pCi/L			05/05/2024	12:00	emv	EPA RA-05	05/07/2024	18:30	amr
	0.593 ± 0.362 5.59 ± 0.762 0.176 ± 0.229	0.593 ± 0.362 0.187 5.59 ± 0.762 0.0913 0.176 ± 0.229 0.410	0.593 ± 0.362 0.187 pCi/L 5.59 ± 0.762 0.0913 pCi/L 0.176 ± 0.229 0.410 pCi/L	0.593 ± 0.362 0.187 pCi/L $15/5$ 5.59 ± 0.762 0.0913 pCi/L 0.176 ± 0.229 0.410 pCi/L	0.593 ± 0.362 0.187 pCi/L $15/5$ 5.59 ± 0.762 0.0913 pCi/L h 0.176 ± 0.229 0.410 pCi/L	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

DQF Flags Definition:

h The MS/MSD did not meet QC criteria.

ND=Non-Detected, RL=Reporting Level

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference.

MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Section: Sample Results Page 2 of 3 Page 2 of 3

Corporate Offices & Laboratory

Page 70 of 73

May 14, 2024

BSK Associates

Lab No. : SP 2406234 Customer No. : 2022939

Quality Control - Radio

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio								
Gross Alpha	900.0	05/07/2024:205059AMR	Blank	pCi/L		ND	<1.9499	
			LCS	pCi/L	128.2	80.8%	50-135	
			MS	pCi/L	128.2	79.2%	60-140	
		(SP 2406655-001)	MSD	pCi/L	128.2	101%	60-140	
			MSRPD	pCi/L		24.0%	≤30	
Gross Beta	900.0	05/07/2024:205059AMR	Blank	pCi/L		ND	<1.8226	
			LCS	pCi/L	18.58	119%	60-126	
			MS	pCi/L	18.58	137%	80-130	435
		(SP 2406655-001)	MSD	pCi/L	18.58	134%	80-130	435
			MSRPD	pCi/L		2.1%	≤30	
Total Radium	903.0	05/06/2024:204566EMV	RgBlk	pCi/L		0.043686	0.40957	
			LCS	pCi/L	21.92	74.6%	52-107	
			BS	pCi/L	21.92	89.2%	43-111	
			BSD	pCi/L	21.92	83.6%	43-111	
			BSRPD	pCi/L		6.4%	≤35.5	
Radium - 228	Ra - 05	05/05/2024:204565EMV	RgBlk	pCi/L		0.64153	0.046687	
			LRS	pCi/L	21.79	73.0%	65-108	
			BS	pCi/L	21.79	92.2%	75-125	
			BSD	pCi/L	21.79	85.1%	75-125	
			BSRPD	pCi/L		8.0%	≤25	

Definition

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

BS : Blank Spikes - A blank is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not affecting analyte recovery.

BSD : Blank Spike Duplicate of BS/BSD pair - A blank duplicate is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not affecting analyte recovery.

BSRPD : BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation and analysis.

DOO : Data Quality Objective - This is the criteria against which the quality control data is compared.

LCS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.

LRS : Laboratory Recovery Standard - Prepared to establish the batch recovery factor used in result calculations.

MS : Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample matrix affects analyte recovery.

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries are an MSD indication of how that sample matrix affects analyte recovery.

MSRPD : MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation and

ND : Non-detect - Result was below the DQO listed for the analyte.

RgBlk : Method Reagent Blank - Prepared to correct for any reagent contributions to sample result.

Explanation

: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery. 435

SUBCONTRACT ORDER AHD3253

240102-34

SENDING LABORATORY:

BSK Associates Laboratory Fresno 687 N. Laverne Avenue

Fresno, CA 93727 Phone: 559-497-2888 Fax: 559-485-6935

Project Manager: Sarah K. Guenther

E-mail: sguenther@bskassociates.com

RECEIVING LABORATORY:

FGL Environmental P.O. Box 272 / 853 Corporation Santa Paula, CA 93060 Phone: (805) 392-2000 Fax: (805) 525-4172 Turnaround (Days): Standard

QC Deliverables: I Std III IV

SEND INVOICE TO:

sguenther@bskassociates.com

Sample Date

ap@bskassociates.com

Sample ID Samp Desc

AHD3253-01 Spring Water

Lab Matrix: Water

Analysis:

EXT-Gross Alpha and Beta EXT-Radium 226-DW Matrix EXT-Radium 228-DW Matrix

State Forms:

System Name:

Client Matrix Water

04/23/2024 08:00

Sampled By: Ray Tackaberry

RUSHI

1-151	
Released By	
UPS	

Received By

Date

we Received By

Released By

Page 72 of 73

FGL Environmental Doc ID: 2D0900157_SOP_19.DOC

Revision Date: 10/10/23 Page: 1 of 1

Condition Upon Receipt (Attach to COC) SP 2406234

Sample Receipt at SP:	
1. Number of ice chests/packages received:	1
2. Shipper tracking number(s) 1Z 93)	X 921 03 7971 7323
3. Temp IR Gun ID#:	TH263_
4. Were samples received on Ice? Yes No	Temps: 17 / / / / /
5. Surface water (SWTR) bact samples: A sample the should be flagged unless the time since sample	hat has a temperature upon receipt of >10C, whether iced or not, collection has been less than two hours.
6. Do the number of bottles received agree with the	e COC? Yes No N/A
7. Verify sample date, time, sampler	Yes No
8. Were the samples received intact? (i.e. no broke bottles, leaks, etc.)	en <mark>Yes</mark> No
Sample Verification, Labeling and Distributio	n:
1. Were all requested analyses understood and acc	ceptable? Yes No
2. Did bottle labels correspond with the client's ID's	s? Yes No
3. Were all bottles requiring sample preservation p preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab]	properly Yes No N/A FGL
4. VOAs checked for Headspace?	Yes No N/A
5. Were all analyses within holding times at time of	
6. Have rush or project due dates been checked an accepted?	nd Yes No N/A
Include a copy of the COC for lab delivery. (Bacti. I Sample Receipt, Login and Verification completed	~
Discrepency Documentation:	
Any items above which are "No" or do not meet sp	pecifications (i.e. temps) must be resolved.
1. Person Contacted:	Phone Number:
Initiated By:	Date:
Problem:	
Resolution:	
2. Person Contacted:	Phone Number:
Initiated By:	Date:
Problem:	
Resolution:	
	(2022939)
	BSK Associates
	SP 2406234
	JI ETVVEJT

MDC-04/24/2024-10:43:17

AHD3257

Invoice: AH10868

Ray Tackaberry Adobe Springs Water 50 N. Salado Avenue, Unit 1417 Patterson, CA 95363

RE: Report for AHD3257 Title 21

Dear Ray Tackaberry,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 4/23/2024. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2016 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

This certificate of analysis shall not be reproduced except in full, without written approval of the laboratory.

If additional clarification of any information is required, please contact your Project Manager, Sarah K. Guenther, at 559-497-2888.

Thank you again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Sarah K. Guenther, Senior Project Manager

Sarah Guerthe

Accredited in Accordance with NELAP ORELAP #4021

Case Narrative

Project and Report Details Invoice Details

Client:Adobe Springs WaterInvoice To: Adobe Springs WaterReport To:Ray TackaberryInvoice Attn: Ray Tackaberry

 Project #:
 PFAS Testing
 Project PO#:

 Received:
 4/23/2024 - 11:57

Sample Receipt Conditions

5/07/2024

Cooler: Default Cooler Containers Intact

Temperature on Receipt °C: 10.7

COC/Labels Agree
Received On Blue Ice

Sample(s) arrived at lab on same day sampled. Sample(s) were received in temperature range.

Initial receipt at BSK-FAL

Data Qualifiers

Report Due:

The following qualifiers have been applied to one or more analytical results:

MS1.6 Matrix Spike recovery meets the wider acceptance criteria of 50-150% when the spike level is at or below the reporting

limit (RL).

Title 21
PFAS Testing

Certificate of Analysis

Sample ID: AHD3257-01 **Sample Date - Time:** 04/23/2024 - 08:00

Sampled By:Ray TackaberryMatrix:WaterSample Description:Spring WaterSample Type:Grab

BSK Associates Laboratory Fresno Organics

					RL			
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed Qu
PFAS Short Chain								
11CI-PF3OUdS	EPA 533	ND	2.0	ng/L	1	AHD1847	04/29/24	05/01/24
9CI-PF3ONS	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
ADONA	EPA 533	ND	2.0	ng/L	1	AHD1847	04/29/24	05/01/24
HFPO-DA	EPA 533	ND	2.0	ng/L	1	AHD1847	04/29/24	05/01/24
NFDHA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFBA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFBS	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
8:2 FTS	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFDA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFDoA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFEESA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFHpS	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFHpA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
4:2 FTS	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFHxS	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFHxA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFMPA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFMBA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFNA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
3:2 FTS	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFOS	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFOA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFPeA	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFPeS	EPA 533	ND	2.0	ng/L	1	AHD1847		05/01/24
PFUnDA	EPA 533	ND	2.0	ng/L	1	AHD1847	04/29/24	05/01/24
Surrogate: S-13C4-PFBA	EPA 533	93 %	Acceptable	range: 50	-200 %			
Surrogate: S-13C5PFPeA	EPA 533	97 %	Acceptable	range: 50	-200 %			
Surrogate: S-13C3-PFBS	EPA 533	92 %	Acceptable	range: 50	-200 %			
Surrogate: S-13C2-4:2FTS	EPA 533	103 %	Acceptable					
Surrogate: S-13C5PFHxA	EPA 533	94 %	Acceptable	range: 50	-200 %			
Surrogate: S-13C3-HFPO-DA	EPA 533	89 %	Acceptable	•				
Surrogate: S-13C4PFHpA	EPA 533	94 %	Acceptable	-				
Surrogate: S-13C3-PFHxS	EPA 533	96 %	Acceptable	-				
Surrogate: S-13C2-6:2FTS	EPA 533	101 %	•	•				
Surrogate: S-13C8PFOA		78 %	Acceptable	-				
-	EPA 533		Acceptable	_				
Surrogate: S-13C9PFNA	EPA 533	90 %	Acceptable					
Surrogate: S-13C8-PFOS	EPA 533	100 %	Acceptable	range: 50	-200 %			
Surrogate: S-13C2-8:2FTS	EPA 533	85 %	Acceptable	range: 50	-200 %			
Surrogate: S-13C6PFDA	EPA 533	85 %	Acceptable	range: 50	-200 %			
Surrogate: S-13C7-PFUnDA	EPA 533	87 %	Acceptable	range: 50	-200 %			
Surrogate: S-13C2PFDoA	EPA 533	89 %	Acceptable	range: 50	-200 %			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Title 21
PFAS Testing

Certificate of Analysis

Sample ID: AHD3257-01
Sampled By: Ray Tackaberry
Sample Description: Spring Water

Sample Date - Time: 04/23/2024 - 08:00

Matrix: Water Sample Type: Grab

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Organics Quality Control Report

			Spike	Source		%REC	RPD	Date
Analyte	Result	RL	Units Level	Result	%REC	Limits	RPD Limit	Analyzed Qual
		EPA 533	- Quality Cor	ntrol				
Batch: AHD1847			•					Prepared: 4/29/2024
Prep Method: EPA 533								Analyst: JNG
Blank (AHD1847-BLK1)								
11CI-PF3OUdS	ND	2.0	ng/L					05/01/24
OCI-PF3ONS	ND	2.0	ng/L					05/01/24
ADONA	ND	2.0	ng/L					05/01/24
HFPO-DA	ND	2.0	ng/L					05/01/24
NFDHA	ND	2.0	ng/L					05/01/24
PFBA	ND	2.0						05/01/24
PFBS	ND		ng/L					05/01/24
		2.0	ng/L					
3:2 FTS	ND	2.0	ng/L					05/01/24
PFDA	ND	2.0	ng/L					05/01/24
PFDoA	ND	2.0	ng/L					05/01/24
PFEESA	ND	2.0	ng/L					05/01/24
PFHpS	ND	2.0	ng/L					05/01/24
PFHpA	ND	2.0	ng/L					05/01/24
I:2 FTS	ND	2.0	ng/L					05/01/24
PFHxS	ND	2.0	ng/L					05/01/24
PFHxA	ND	2.0	ng/L					05/01/24
PFMPA	ND	2.0	ng/L					05/01/24
PFMBA	ND	2.0	ng/L					05/01/24
PFNA	ND	2.0						05/01/24
3:2 FTS	ND		ng/L					05/01/24
PFOS		2.0	ng/L					
	ND	2.0	ng/L					05/01/24
PFOA	ND	2.0	ng/L					05/01/24
PFPeA	ND	2.0	ng/L					05/01/24
PFPeS	ND	2.0	ng/L					05/01/24
PFUnDA	ND	2.0	ng/L					05/01/24
Surrogate: S-13C4-PFBA	29		40		74	50-200		05/01/24
Surrogate: S-13C5PFPeA	29		40		73	50-200		05/01/24
Surrogate: S-13C3-PFBS	37		40		93	50-200		05/01/24
Surrogate: S-13C2-4:2FTS	150		160		97	50-200		05/01/24
Surrogate: S-13C5PFHxA	31		40		79	50-200		05/01/24
Surrogate: S-13C3-HFPO-DA	33		40		83	50-200		05/01/24
Surrogate: S-13C4PFHpA	32		40		80	50-200		05/01/24
Surrogate: S-13C3-PFHxS	38		40		94	50-200		05/01/24
Surrogate: S-13C2-6:2FTS	140		160		90	50-200		05/01/24
Surrogate: S-13C8PFOA	27		40		68	50-200		05/01/24
Surrogate: S-13C9PFNA	32		40		80	50-200		05/01/24
Surrogate: S-13C8-PFOS	38		40		96	50-200		05/01/24
Surrogate: S-13C2-8:2FTS	150		160		92	50-200		05/01/24
Surrogate: S-13C6PFDA	33		40		83	50-200		05/01/24
Surrogate: S-13C7-PFUnDA	34		40		85	50-200		05/01/24
Surrogate: S-13C2PFDoA	36		40		90	50-200		05/01/24
Blank Spike (AHD1847-BS1)								
11CI-PF3OUdS	31	2.0	ng/L 30	ND	104	70-130		05/01/24

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Organics Quality Control Report

				Spike	Source		%REC	RPD	Date
Analyte	Result	RL	Units		Result	%REC	Limits	RPD Limit	
		EPA 533	- Quali	ity Con	trol				
Batch: AHD1847			-	,					Prepared: 4/29/2024
Prep Method: EPA 533									Analyst: JNC
Blank Spike (AHD1847-BS1)									
OCI-PF3ONS	31	2.0	ng/L	30	ND	104	70-130		05/01/24
ADONA	29	2.0	ng/L	30	ND	98	70-130		05/01/24
HFPO-DA	26	2.0	ng/L	30	ND	87	70-130		05/01/24
NFDHA	28	2.0	ng/L	30	ND	93	70-130		05/01/24
PFBA	32		-	30	ND	105	70-130		05/01/24
PFBS	32	2.0	ng/L	30	ND		70-130		05/01/24
		2.0	ng/L			107			
3:2 FTS	30	2.0	ng/L	30	ND	99	70-130		05/01/24
PFDA	30	2.0	ng/L	30	ND	101	70-130		05/01/24
PFDoA	31	2.0	ng/L	30	ND	103	70-130		05/01/24
PFEESA	33	2.0	ng/L	30	ND	111	70-130		05/01/24
PFHpS	31	2.0	ng/L	30	ND	105	70-130		05/01/24
PFHpA	30	2.0	ng/L	30	ND	99	70-130		05/01/24
4:2 FTS	32	2.0	ng/L	30	ND	108	70-130		05/01/24
PFHxS	32	2.0	ng/L	30	ND	107	70-130		05/01/24
PFHxA	32	2.0	ng/L	30	ND	107	70-130		05/01/24
PFMPA	31	2.0	ng/L	30	ND	104	70-130		05/01/24
PFMBA	31	2.0	ng/L	30	ND	103	70-130		05/01/24
PFNA	32	2.0	ng/L	30	ND	106	70-130		05/01/24
3:2 FTS	28	2.0	ng/L	30	ND	95	70-130		05/01/24
PFOS	32	2.0	ng/L	30	ND	107	70-130		05/01/24
PFOA	34	2.0	ng/L	30	ND	114	70-130		05/01/24
PFPeA	32	2.0	ng/L	30	ND	106	70-130		05/01/24
PFPeS	33	2.0	ng/L	30	ND	110	70-130		05/01/24
PFUnDA	31	2.0	ng/L	30	ND	104	50-150		05/01/24
Surrogate: S-13C4-PFBA	35	2.0	iig/L	40		87	50-200		05/01/24
Surrogate: S-13C5PFPeA	36			40		89	50-200		05/01/24
Surrogate: S-13C3-PFBS	39			40		97	50-200		05/01/24
Surrogate: S-13C2-4:2FTS	170			160		104	50-200		05/01/24
Surrogate: S-13C5PFHxA	34			40		85	50-200		05/01/24
Surrogate: S-13C3-HFPO-DA	42			40		105	50-200		05/01/24
Surrogate: S-13C4PFHpA	37			40		94	50-200		05/01/24
Surrogate: S-13C3-PFHxS	39			40		97	50-200		05/01/24
Surrogate: S-13C2-6:2FTS	160			160		100	50-200		05/01/24
Surrogate: S-13C8PFOA	30			40		76	50-200		05/01/24
Surrogate: S-13C9PFNA	35			40		88	50-200		05/01/24
Surrogate: S-13C8-PFOS	39			40		99	50-200		05/01/24
Surrogate: S-13C2-8:2FTS	150			160		96	50-200		05/01/24
Surrogate: S-13C6PFDA	34			40		86	50-200		05/01/24
Surrogate: S-13C7-PFUnDA	34			40		86	50-200		05/01/24
Surrogate: S-13C2PFDoA	37			40		91	50-200		05/01/24
Matrix Spike (AHD1847-MS1), Sourc	e: AHD3900-01								
11CI-PF3OUdS	2.0	2.0	ng/L	1.9	ND	104	70-130		05/01/24
OCI-PF3ONS	1.9	2.0	ng/L	1.9	ND	100	70-130		05/01/24

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Organics Quality Control Report

EPA 533 1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	ng/L ng/L ng/L ng/L ng/L ng/L	1.9 1.9 1.9 1.9 1.9	ND ND ND ND	99 95	70-130 70-130				d: 4/29/2024 .nalyst: JNC
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	ng/L ng/L ng/L ng/L	1.9 1.9 1.9	ND	95				A	
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	ng/L ng/L ng/L ng/L	1.9 1.9 1.9	ND	95					nalyst: JN0
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	ng/L ng/L ng/L ng/L	1.9 1.9 1.9	ND	95				05/01/24	
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	ng/L ng/L ng/L ng/L	1.9 1.9 1.9	ND	95				05/01/24	
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	ng/L ng/L ng/L ng/L	1.9 1.9 1.9	ND	95					
2.0 2.0 2.0 2.0 2.0 2.0 2.0	ng/L ng/L ng/L ng/L	1.9 1.9						05/01/24	
2.0 2.0 2.0 2.0 2.0 2.0	ng/L ng/L ng/L	1.9	110	86	70-130			05/01/24	
2.0 2.0 2.0 2.0 2.0	ng/L ng/L		2.4	102	70-130			05/01/24	
2.0 2.0 2.0 2.0	ng/L	1.9	6.1	121	70-130			05/01/24	
2.0 2.0 2.0	-	1.9	ND	81	70-130			05/01/24	
2.0 2.0	ng/L								
2.0		1.9	ND	111	70-130			05/01/24	
	ng/L	1.9	ND	97	70-130			05/01/24	
2.0	ng/L	1.9	ND	108	70-130			05/01/24	
	ng/L	1.9	ND	136	70-130			05/01/24	MS1.6 High
2.0	ng/L	1.9	2.1	99	70-130			05/01/24	
2.0	ng/L	1.9	ND	115	70-130			05/01/24	
2.0	ng/L	1.9	14	107	70-130			05/01/24	
2.0	ng/L	1.9	3.8	100	70-130			05/01/24	
2.0	ng/L	1.9	ND	97	70-130			05/01/24	
2.0	ng/L	1.9	ND	106	70-130			05/01/24	
2.0	ng/L	1.9	ND	111	70-130			05/01/24	
2.0	ng/L	1.9	ND	98	70-130			05/01/24	
2.0	ng/L	1.9	18	102	70-130			05/01/24	
2.0	ng/L	1.9	5.5	111	70-130			05/01/24	
2.0	ng/L	1.9	3.5	111	70-130			05/01/24	
2.0	ng/L	1.9	2.7	95	70-130			05/01/24	
2.0	ng/L	1.9	ND	104	70-130			05/01/24	
2.0	IIg/L	39	ND	87	50-200			05/01/24	
		39		91	50-200			05/01/24	
		39							
		39		87	50-200			05/01/24	
		39		84	50-200			05/01/24	
		39		87	50-200			05/01/24	
		39		93	50-200			05/01/24	
		150		93	50-200			05/01/24	
		39		69	50-200			05/01/24	
		39		79	50-200			05/01/24	
		39		94	50-200			05/01/24	
		150		96	50-200			05/01/24	
		39		80	50-200			05/01/24	
		39		82	50-200			05/01/24	
		39		87	50-200			05/01/24	
3900-01									
	na/l	2.0	ND	97	70-130	5	30	05/01/24	
	-								
2.0	-								
	3900-01 2.0 2.0	3900-01 2.0 ng/L 2.0 ng/L	150 39 39 39 39 39 39 39 39 39 39 39 39 39	150 39 39 39 39 39 39 39 39 39 39	150 102 39 87 39 84 39 87 39 87 39 93 30 150 93 39 69 39 79 39 69 39 94 0 150 96 39 94 0 150 96 39 80 2 39 80 2 39 87 39 80 2 39 87	150 102 50-200 39 87 50-200 39 84 50-200 39 93 50-200 39 93 50-200 39 93 50-200 39 93 50-200 39 69 50-200 39 79 50-200 39 94 50-200 39 94 50-200 39 96 50-200 39 80 50-200 39 80 50-200 39 80 50-200 39 80 50-200 39 80 50-200 39 87 50-200 3900-01	150 102 50-200 39 87 50-200 39 84 50-200 39 93 50-200 39 93 50-200 39 93 50-200 39 69 50-200 39 69 50-200 39 79 50-200 39 94 50-200 39 94 50-200 39 80 50-200 39 80 50-200 39 80 50-200 39 80 50-200 39 87 50-200 39 87 50-200 39 87 50-200	150 102 50-200 39 87 50-200 39 84 50-200 39 93 50-200 39 93 50-200 39 93 50-200 39 69 50-200 39 79 50-200 39 94 50-200 39 94 50-200 39 94 50-200 39 94 50-200 39 80 50-200 39 80 50-200 39 87 50-200 39 87 50-200 39 87 50-200 39 80 50-200 39 87 50-200 39 87 50-200	150 102 50-200 05/01/24 39 87 50-200 05/01/24 39 84 50-200 05/01/24 39 87 50-200 05/01/24 39 87 50-200 05/01/24 39 93 50-200 05/01/24 39 93 50-200 05/01/24 39 69 50-200 05/01/24 39 79 50-200 05/01/24 39 94 50-200 05/01/24 39 94 50-200 05/01/24 39 96 50-200 05/01/24 39 97 50-200 05/01/24 39 80 50-200 05/01/24 39 80 50-200 05/01/24 39 80 50-200 05/01/24 39 80 50-200 05/01/24 39 80 50-200 05/01/24 39 80 50-200 05/01/24 39 80 50-200 05/01/24 39 80 50-200 05/01/24 39 80 50-200 05/01/24

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Organics Quality Control Report

Analysta	Popult	DI	Units	Spike Level	Source	% DEC	%REC	DDD	RPD	Date	Ougl
Analyte	Result	RL			Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 533	- Qua	lity Con	trol						
Batch: AHD1847										Prepare	d: 4/29/202
Prep Method: EPA 533										Δ	nalyst: JN0
Matrix Spike Dup (AHD1847-MSD1)), Source: AHD3900-01										
HFPO-DA	2.0	2.0	ng/L	2.0	ND	104	70-130	11	30	05/01/24	
NFDHA	1.9	2.0	ng/L	2.0	ND	95	70-130	12	30	05/01/24	
PFBA	4.3	2.0	ng/L	2.0	2.4	94	70-130	3	30	05/01/24	
PFBS	8.1	2.0	ng/L	2.0	6.1	101	70-130	4	30	05/01/24	
3:2 FTS	1.7	2.0	ng/L	2.0	ND	88	70-130	10	30	05/01/24	
PFDA	1.9	2.0	ng/L	2.0	ND	98	70-130	11	30	05/01/24	
PFDoA	2.0	2.0	ng/L	2.0	ND	101	70-130	6	30	05/01/24	
PFEESA	2.2	2.0	ng/L	2.0	ND	112	70-130	6	30	05/01/24	
PFHpS	2.7	2.0	ng/L	2.0	ND	137	70-130	3	30	05/01/24	MS1.6 High
PFHpA	4.1	2.0	ng/L	2.0	2.1	101	70-130	2	30	05/01/24	
1:2 FTS	2.5	2.0	ng/L	2.0	ND	126	70-130	11	30	05/01/24	
PFHxS	16	2.0	ng/L	2.0	14	107	70-130	0	30	05/01/24	
PFHxA	5.8	2.0	ng/L	2.0	3.8	102	70-130	1	30	05/01/24	
PFMPA	2.1	2.0	ng/L	2.0	ND	107	70-130	12	30	05/01/24	
PFMBA	2.2	2.0	ng/L	2.0	ND	110	70-130	6	30	05/01/24	
PFNA	2.4	2.0	ng/L	2.0	ND	120	70-130	9	30	05/01/24	
3:2 FTS	1.9	2.0	ng/L	2.0	ND	95	70-130	1	30	05/01/24	
PFOS	21	2.0	ng/L	2.0	18	109	70-130	1	30	05/01/24	
PFOA	7.2	2.0	ng/L	2.0	5.5	90	70-130	5	30	05/01/24	
PFPeA	5.9	2.0	ng/L	2.0	3.5	123	70-130	5	30	05/01/24	
PFPeS	4.8	2.0	ng/L	2.0	2.7	106	70-130	5	30	05/01/24	
PFUnDA	2.1	2.0	ng/L	2.0	ND	107	70-130	5	30	05/01/24	
Surrogate: S-13C4-PFBA	35		ŭ	39		89	50-200			05/01/24	
Surrogate: S-13C5PFPeA	38			39		96	50-200			05/01/24	
Surrogate: S-13C3-PFBS	37			39		94	50-200			05/01/24	
Surrogate: S-13C2-4:2FTS	150			160		95	50-200			05/01/24	
Surrogate: S-13C5PFHxA	39			39		99	50-200			05/01/24	
Surrogate: S-13C3-HFPO-DA	39			39		99	50-200			05/01/24	
Surrogate: S-13C4PFHpA	39			39 30		100	50-200			05/01/24	
Surrogate: S-13C3-PFHxS Surrogate: S-13C2-6:2FTS	36 150			39 160		91 95	50-200 50-200			05/01/24 05/01/24	
Surrogate: S-13C8PFOA	33			39		95 85	50-200			05/01/24	
Surrogate: S-13C9PFNA	37			39		95	50-200			05/01/24	
Surrogate: S-13C8-PFOS	37			39		95	50-200			05/01/24	
Surrogate: S-13C2-8:2FTS	150			160		95	50-200			05/01/24	
Surrogate: S-13C6PFDA	36			39		93	50-200			05/01/24	
Surrogate: S-13C7-PFUnDA	36			39		92	50-200			05/01/24	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

37

Surrogate: S-13C2PFDoA

AHD3257 Final FINAL 05 06 2024 1559 05062024 1600

05/01/24

50-200

39

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- · Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- · Field tests are outside the scope of laboratory accreditation and there is no certification available for field testing.
- Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.
- \cdot $\,$ (2) Formerly known as Bis(2-Chloroisopropyl) ether.
 - Unless otherwise noted, TOC results by SM 5310C method do not include purgeable organic carbon, which is removed along with the inorganic carbon interference. The POC contribution to TOC is considered to be negligible.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Non-Reportable

Certificate of Analysis

Definitions

NR:

mg/L: Milligrams/Liter (ppm) MDL: Method Detection Limit MDA95: Min. Detected Activity Milligrams/Kilogram (ppm) Reporting Limit: DL x Dilution MPN: Most Probable Number mg/Kg: RL: CFU: μg/L: Micrograms/Liter (ppb) ND: None Detected below MRL/MDL Colony Forming Unit Micrograms/Kilogram (ppb) pCi/L: PicoCuries per Liter Absent: Less than 1 CFU/100mLs μg/Kg: RL Mult: RL Multiplier Present: 1 or more CFU/100mLs Percent %:

MCL: Maximum Contaminant Limit U: The analyte was not detected at or above the reported sample quantitation

above the reported sample quantital

limit.

Please see the individual Subcontract Lab's report for applicable certifications.

The following parameters are not available for certification through CA ELAP:

Odor Diisopropyl ether (DIPE) by EPA 524.2

The following parameters are calculated values and are outside the scope of our NELAP accreditation:

Total Nitrogen Aggressive Index Trivalent Chromium

BSK is not accredited under the NELAP program for the following additional parameters:

NA

Certificate of Analysis

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

_		_		_
_	ro	c	n	n
	ı	•		v

State of California - ELAP	1180	State of Hawaii	4021
Los Angeles CSD	9254479	NELAP certified	4021-023
State of Nevada	CA000792024-03	State of Oregon - NELAP	4021-023
EPA UCMR5	CA00079	State of Washington	C997-24

Sacramento

State of California - ELAP 1180-S1

San Bernardino

State of California - ELAP 1180-S2 Los Angeles CSD 9254478

NELAP certified 4119-008 State of Oregon - NELAP 4119-008

Vancouver

NELAP certified WA100008-016 State of Oregon - NELAP WA100008-016

State of Washington C824-23

Sample Integrity

141004000000000000000000000000000000000	CONTRACTOR CONTRACTOR ST	The state of the s	
		10	

BS	K Bottles: Yes No Page	e \ of	1		Į.				·
	Was temperature within range?		V	Vere	correct contain	ners and p	reservatives	1	`
0	Chemistry ≤ 6°C Micro < 8°C	Yes No NA	r	eceiv	ed for the test	s requeste	ed?	10	S No
COC Info	If samples were taken today, is there evidence that chilling has begun?	Yes No NA	4 E	BR	es Present VC ceived? (Che	As (524.2	/TTHM/TCP		No NA
ပ္	Did all bottles arrive unbroken and intact?	Yes No			sufficient amo			d? Yes	
ဗ	Did all bottle labels agree with COC?	Yes No			mples have a				
	Was sodium thiosulfate added to CN sample(s) until chlorine was no longer present?	Yes MA) v	Vas F M:	M notified of dt:	discrepand	cies? ail scan co	Vec	No ₄NA
	250ml(A) 500ml(B) 1Liter(C) 40mlVOA(V) 125ml(D)	Checks*	Pas	sed?	1	7			
	Bacti Na ₂ S ₂ O ₃		-	-					129.95
	None (P)White Label	_	-	_ ,					
	Cr6 (P) Lt. Green Label/Blue Cap NH40H(NH4)2SO4 DW	CI, pH > 8	Р	F					
ap	Cr6 (P) Pink Label/Blue Cap NH4OH(NH4)2SO4 WW	pH 9.3-9.7	Р	F					
in the lab	Cr6 (P) Black Label/Blue Cap NH40H(NH4)2SO4 7199 ***24 HOUR HOLD TIME***	pH 9.0-9.5	Р	F					
		<u> </u>	_						
performed	H ₂ SO ₄ (P) or (AG) Yellow Label	pH < 2	Р	F					
	NaOH (P) Green Cap/Label	CI, pH >10	P	F		N - S /			
are	NaOH + ZnAc (P)	pH > 9	P	F			1. 10 12 12 N		
ō	Dissolved Oxygen 300ml (g)		<u> </u>		OF STREET				SHC Six S
ived either N/A	None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270								
Vec	HCI (AG)Lt. Blue Label O&G, Diesel, TCP					LIE LAND			
eceived are either	Ascorbic, EDTA, KH ₂ Ct (AG) ^{Pink Label} 525	THE STATE OF THE S	0.1					Teal (1811 #1	intristivaneali
	Na ₂ SO ₃ 250mL (AG) ^{Neon Green Label} 515								
tles R checks	Na ₂ S ₂ O ₃ 1 Liter (Brown P) 549							The same of the same	
	Na ₂ S ₂ O ₃ (AG) ^{Blue Label} 548, THM, 524		_			136318			
B			_	0 11231					
η/ch	Na ₂ S ₂ O ₃ (CG) ^{Blue Label} 504, 505, 547		-						
Bol preservation/chlorine	Na ₂ S ₂ O ₃ + MCAA (CG) ^{Orange Label} 531	pH < 3	Р	F					
Serv	NH ₄ Cl (AG) ^{Purple Label} 552		-	-					
pres	EDA (P) or (AG) Brown Label DBPs		-	-					
	HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624			-					
means	Buffer pH 4 (CG)	:	-	-					. /
3	H ₃ PO ₄ (CG) ^{Salmon Label}		· -					// /	(-
	Trizma – EPA 537.1 ^{Light Blue Label} FB			-	~			14	
	Ammonia Acetate - EPA 533 Purple Label FB	-	-	-	3A	1A		110	200
	Bottled Water		_	-				110	11.67
-	Clear Glass: Jar / VOA		. •	-				//	/
	OTHER:					71 (1X3-10)	1),5322000		
	Container Preservative	Lot #	Initia	als	Date/Time	Pre	l l servation	Check	
Split	S P	_98.11	111111	2.0	Dato/Time	pH L		CHECK	
S	SP					CILC			
	*Preservation check completed by lab performi	ng analysis.		√	ndicates Bla				
Comments			504		524.2	TTHM	537/5	33 T	CP
Com	Labeled by	2		✓ I	MS/MSD Red	ceived M	ethod:		
	Labeled by: Checked I	oy:							

	~
Scanned:	(0.)
cocos continuo con entre la	+

687 N. Laverne Ave., Fresno, CA 93727

Date needed:	Rush (Surcharge may apply	Standard - 10 business days	Turnaround Time Kequest
	ay apply)	ess days	duest

	d Fields	arge may apply)	0 business days
Phone*:			
Phone*:			AHD3257
•			4
,			7 Adobe3023
,			

			Custody Seal: Y/N			Courier	SWG JUNE		100
	Init.	PIA#	Amount	Date	137		1/0/17	15/3/	10/1/1
Cash	Check /			Payment Received at Delivery:	J	Date	Jac but	,	Received for Lab,by (Signature and Pante)
	Company	Con		Received by: (Signature and Printed Name)		Date	Company		Relinquished by: (Signature and Printed Name)
	Company	Con		Received by: (Signature and Printed Name)	Time	4-7)	And Spring	6	Relinquished by: (Signature and Printed Name)
								FS	
			×				æ		SPIMA WATER
			E	Comments / Station Code / WTRAX	Comm	Matrix*	Date Time	Sample Description*	# Sample De
			P	ng Water SO=Solid	DW=Drinkir	Storm Water	Matrix Types SW=Surface Water BW=Bottled Water GW=Ground Water WW=Waste Water STW=Storm Water DW=Drinking Water SO=Solid	ster BW=Bottled Water GW=0	Matrix Types: SW=Surface Wa
			A	acker #	Geotracker #	000	Other		
			5	System Number*:	Syst	Fresno Co			nted/Signature)*:
			33	EDT to California SWRCB (Drinking Water)	□ EDT to		SWRCB (Drinking Water)	EDD Type	Trace (J-Flag) Swamp
				Regulatory Compliance	900	2	Froject #		PFAS testing
				State*: Zip*: 95363	(0)		Patterson	Unit 1417	tadress: 50 N. Salado Avenue, Unit 1417
	.com	esprings	(408) 897-3023 e-mail:: ray@adobesprings.com	ckaberry	Ray Ta		Report Attention*: Ray Tackaberry Additional cc's:	s Water R	Adobe Springs Water Ray Tackaberry
1				red Fields	*Requi		Temp: ∅:// °C Thermometer ID: ¬>	Temp: ().//°C T	
	10			ded:	Date needed:			www.bskassociates.co	ASSOCIATES
				Standard - 10 business days Rush (Surcharge may apply)	Standard		CA EDI NO. 100	www.hekassociates.com	
4	CHILL TO LEVEL TO THE PARTY OF	TAMES OF THE PARTY	The same of the sa		-		2 [20 20 20 20 20 20 20 20 20 20 20 20 20		- CONTRACTOR CONTRACTO

Shipping/Method: QLS

Wet None

Ray Tackaberry Adobe Springs Water 50 N. Salado Avenue, Unit 1417 Patterson, CA 95363

RE: Report for AHE0057 Title 21

Dear Ray Tackaberry,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 5/1/2024. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2016 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

This certificate of analysis shall not be reproduced except in full, without written approval of the laboratory.

If additional clarification of any information is required, please contact your Project Manager, Sarah K. Guenther, at 559-497-2888.

Thank you again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Sarah K. Guenther, Senior Project Manager

Sarch Guerthe

Accredited in Accordance with NELAP
ORELAP #4021

Case Narrative

Project and Report Details

Invoice Details

Adobe Springs Water Client: Ray Tackaberry

Invoice To: Adobe Springs Water Invoice Attn: Ray Tackaberry

Report To: Title 21

Project PO#: -

Project #: Received:

5/01/2024 - 11:20

5/15/2024 Report Due:

Sample Receipt Conditions

Cooler: Default Cooler **Containers Intact** COC/Labels Agree Temperature on Receipt °C: 4.2

Received On Blue Ice

Packing Material - Bubble Wrap

Packing Material - Foam

Sample(s) were received in temperature range.

Initial receipt at BSK-FAL

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

Blank spike recoveries did not meet acceptance limits.

BS1.0 Blank spike recovery for this analyte was above upper control limit; no material impact on reported result as sample is

ND for this parameter.

CV0.0 CCV recovery was above method acceptance limits; no material impact on reported result as sample detection is below

the reporting limit for this parameter.

Title 21

Title 21

Certificate of Analysis

Sample ID: AHE0057-01
Sampled By: Jennifer Jones
Sample Description: Spring Water

Sample Date - Time: 04/30/2024 - 09:12

Matrix: Water Sample Type: Grab

BSK Associates Laboratory Fresno Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Volatile Organics (SDWA Regu	lated) by GC-MS								
1,1,1-Trichloroethane	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
1,1,2,2-Tetrachloroethane	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
1,1,2-Trichloro-1,2,2-trifluoroethane	EPA 524.2	ND	10	ug/L	1	AHE0263	05/07/24	05/07/24	
1,1,2-Trichloroethane	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
1,1-Dichloroethane	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
1,1-Dichloroethene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
1,2,4-Trichlorobenzene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
1,2-Dichlorobenzene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
1,2-Dichloroethane	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
1,2-Dichloropropane	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
1,4-Dichlorobenzene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Benzene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Carbon Tetrachloride	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Chlorobenzene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
cis-1,2-Dichloroethene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
cis-1,3-Dichloropropene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Dichloromethane	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	BS1.0, CV0.0
Ethylbenzene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
m,p-Xylenes	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Methyl-t-butyl ether	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
o-Xylene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Styrene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Tetrachloroethene (PCE)	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Toluene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
trans-1,2-Dichloroethene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
trans-1,3-Dichloropropene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Trichloroethene (TCE)	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Trichlorofluoromethane	EPA 524.2	ND	5.0	ug/L	1	AHE0263	05/07/24	05/07/24	BS1.0, CV0.0
Vinyl Chloride	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	BS1.0, CV0.0
Total 1,3-Dichloropropene	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Total Xylenes	EPA 524.2	ND	0.50	ug/L	1	AHE0263	05/07/24	05/07/24	
Surrogate: 1,2-Dichlorobenzene-d4	EPA 524.2	122 %	Acceptable	e range: 70	-130 %				
Surrogate: Bromofluorobenzene	EPA 524.2	117 %	Acceptable	e range: 70	-130 %				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AHE0057 Final FINAL 05 13 2024 1525 05132024 1525

Organics Quality Control Report

		rganics Qu		Source		%PEC	, ppp	Doto
Analyte	Result	RL	Spike Units _{Level}		%REC	%REC Limits	RPD Limit	Date Analyzed Qual
			2 - Quality (,
Batch: AHE0263		EFA 324.	2 - Quality C	Jonardi				Prepared: 5/7/2024
Prep Method: EPA 524.2								Analyst: CAT
Blank (AHE0263-BLK1)								
1,1,1-Trichloroethane	ND	0.50	ug/L					05/07/24
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L					05/07/24
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	ug/L					05/07/24
1,1,2-Trichloroethane	ND	0.50	ug/L					05/07/24
1,1-Dichloroethane	ND	0.50	ug/L					05/07/24
1,1-Dichloroethene	ND	0.50	ug/L					05/07/24
1,2,4-Trichlorobenzene	ND	0.50	ug/L					05/07/24
1,2-Dichlorobenzene	ND	0.50	ug/L					05/07/24
1,2-Dichloroethane	ND	0.50	ug/L					05/07/24
1,2-Dichloropropane	ND	0.50	ug/L					05/07/24
1,4-Dichlorobenzene	ND	0.50	ug/L					05/07/24
Benzene	ND	0.50	ug/L					05/07/24
Carbon Tetrachloride	ND	0.50	ug/L					05/07/24
Chlorobenzene	ND	0.50	ug/L ug/L					05/07/24
cis-1,2-Dichloroethene	ND	0.50	ug/L ug/L					05/07/24
cis-1,3-Dichloropropene	ND	0.50	_					05/07/24
Dichloromethane	ND		ug/L					05/07/24
Ethylbenzene	ND	0.50	ug/L					05/07/24
•	ND	0.50	ug/L					05/07/24
m,p-Xylenes	ND ND	0.50	ug/L					05/07/24
Methyl-t-butyl ether		0.50	ug/L					05/07/24
o-Xylene	ND	0.50	ug/L					
Styrene	ND	0.50	ug/L					05/07/24
Tetrachloroethene (PCE)	ND	0.50	ug/L					05/07/24
Toluene	ND	0.50	ug/L					05/07/24
trans-1,2-Dichloroethene	ND	0.50	ug/L					05/07/24
trans-1,3-Dichloropropene	ND	0.50	ug/L					05/07/24
Trichloroethene (TCE)	ND	0.50	ug/L					05/07/24
Trichlorofluoromethane	ND	5.0	ug/L					05/07/24
Vinyl Chloride	ND	0.50	ug/L					05/07/24
Total 1,3-Dichloropropene	ND	0.50	ug/L					05/07/24
Total Xylenes	ND	0.50	ug/L					05/07/24
Surrogate: 1,2-Dichlorobenzene-d4	62		50		123	70-130		05/07/24
Surrogate: Bromofluorobenzene	60		50		120	70-130		05/07/24
Blank Spike (AHE0263-BS1)								
1,1,1-Trichloroethane	13	0.50	ug/L 1		130	70-130		05/07/24
1,1,2,2-Tetrachloroethane	12	0.50	ug/L 1		120	70-130		05/07/24
1,1,2-Trichloro-1,2,2-trifluoroethane	12	10	ug/L 1		122	70-130		05/07/24
1,1,2-Trichloroethane	12	0.50	ug/L 1		122	70-130		05/07/24
1,1-Dichloroethane	13	0.50	ug/L 1	0 ND	127	70-130		05/07/24
1,1-Dichloroethene	13	0.50	ug/L 1	0 ND	130	70-130		05/07/24
1,2,4-Trichlorobenzene	10	0.50	ug/L 1	0 ND	102	70-130		05/07/24
1,2-Dichlorobenzene	12	0.50	ug/L 1	0 ND	119	70-130		05/07/24
			-					

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AHE0057 Final FINAL 05 13 2024 1525 05132024 1525

Organics Quality Control Report

				Spike	Source		%REC		RPD	Date		
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual	
		EPA 524.	2 - Qua	lity Cor	ntrol							
Batch: AHE0263				•						Prepar	ed: 5/	7/202
Prep Method: EPA 524.2											Analys	t: CA
Blank Spike (AHE0263-BS1)												
1,2-Dichloroethane	13	0.50	ug/L	10	ND	128	70-130			05/07/24		
1,2-Dichloropropane	12	0.50	ug/L	10	ND	123	70-130			05/07/24		
1,4-Dichlorobenzene	12	0.50	ug/L	10	ND	115	70-130			05/07/24		
Benzene	12	0.50	ug/L	10	ND	123	70-130			05/07/24		
Carbon Tetrachloride	12	0.50	ug/L	10	ND	125	70-130			05/07/24		
Chlorobenzene	11	0.50	ug/L	10	ND	114	70-130			05/07/24		
cis-1,2-Dichloroethene	12	0.50	ug/L	10	ND	121	70-130			05/07/24		
cis-1,3-Dichloropropene	12	0.50	ug/L	10	ND	122	70-130			05/07/24		
Dichloromethane	13	0.50	ug/L	10	ND	132	70-130			05/07/24	BS	High
Ethylbenzene	11	0.50	ug/L	10	ND	110	70-130			05/07/24		
m,p-Xylenes	22	0.50	ug/L	20	ND	112	70-130			05/07/24		
Methyl-t-butyl ether	24	0.50	ug/L	20	ND	120	70-130			05/07/24		
o-Xylene	11	0.50	ug/L	10	ND	113	70-130			05/07/24		
Styrene	11	0.50	ug/L	10	ND	110	70-130			05/07/24		
Tetrachloroethene (PCE)	12	0.50	ug/L	10	ND	118	70-130			05/07/24		
Toluene	12	0.50	ug/L	10	ND	119	70-130			05/07/24		
trans-1,2-Dichloroethene	13	0.50	ug/L	10	ND	125	70-130			05/07/24		
trans-1,3-Dichloropropene	12	0.50	ug/L	10	ND	122	70-130			05/07/24		
Trichloroethene (TCE)	12	0.50	ug/L	10	ND	118	70-130			05/07/24		
Trichlorofluoromethane	14	5.0	ug/L	10	ND	140	70-130			05/07/24	BS	High
Vinyl Chloride	14	0.50	ug/L	10	ND	140	70-130			05/07/24		High
Surrogate: 1,2-Dichlorobenzene-d4	63	0.00	ug/L	50		126	70-130			05/07/24		
Surrogate: Bromofluorobenzene	63			50		126	70-130			05/07/24		
Blank Spike Dup (AHE0263-BSD1)												
1,1,1-Trichloroethane	12	0.50	ug/L	10	ND	119	70-130	9	30	05/07/24		
1,1,2,2-Tetrachloroethane	11	0.50	ug/L	10	ND	110	70-130	8	30	05/07/24		
1,1,2-Trichloro-1,2,2-trifluoroethane	11	10	ug/L	10	ND	108	70-130	12	30	05/07/24		
1,1,2-Trichloroethane	11	0.50	ug/L	10	ND	114	70-130	6	30	05/07/24		
1,1-Dichloroethane	12	0.50	ug/L	10	ND	118	70-130	7	30	05/07/24		
1,1-Dichloroethene	12	0.50	ug/L	10	ND	119	70-130	9	30	05/07/24		
1,2,4-Trichlorobenzene	9.5	0.50	ug/L	10	ND	95	70-130	7	30	05/07/24		
1,2-Dichlorobenzene	11	0.50	ug/L	10	ND	112	70-130	6	30	05/07/24		
1,2-Dichloroethane	12	0.50	ug/L	10	ND	120	70-130	7	30	05/07/24		
1,2-Dichloropropane	12	0.50	ug/L	10	ND	116	70-130	6	30	05/07/24		
1,4-Dichlorobenzene	11	0.50	ug/L	10	ND	109	70-130	6	30	05/07/24		
Benzene	12	0.50	ug/L	10	ND	116	70-130	6	30	05/07/24		
Carbon Tetrachloride	11	0.50	ug/L	10	ND	115	70-130	8	30	05/07/24		
Chlorobenzene	11	0.50	ug/L	10	ND	107	70-130	7	30	05/07/24		
cis-1,2-Dichloroethene	11	0.50	ug/L ug/L	10	ND	114	70-130	6	30	05/07/24		
cis-1,3-Dichloropropene	11	0.50	ug/L ug/L	10	ND	114	70-130	7	30	05/07/24		
Dichloromethane	13	0.50	ug/L ug/L	10	ND	125	70-130	5	30	05/07/24		
2.00.011001010	10	0.50	ug/L	10	140	120	. 5 . 50	0	50	00/01/27		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AHE0057 Final FINAL 05 13 2024 1525 05132024 1525

Organics Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
		EPA 524.	2 - Qua	ality Co	ntrol						
Batch: AHE0263										Prepar	ed: 5/7/2024
Prep Method: EPA 524.2										Α	nalyst: CAT
Blank Spike Dup (AHE0263-BSD1)											
m,p-Xylenes	21	0.50	ug/L	20	ND	106	70-130	6	30	05/07/24	
Methyl-t-butyl ether	23	0.50	ug/L	20	ND	113	70-130	6	30	05/07/24	
o-Xylene	11	0.50	ug/L	10	ND	106	70-130	6	30	05/07/24	
Styrene	10	0.50	ug/L	10	ND	103	70-130	7	30	05/07/24	
Tetrachloroethene (PCE)	11	0.50	ug/L	10	ND	108	70-130	8	30	05/07/24	
Toluene	11	0.50	ug/L	10	ND	113	70-130	6	30	05/07/24	
trans-1,2-Dichloroethene	12	0.50	ug/L	10	ND	117	70-130	7	30	05/07/24	
trans-1,3-Dichloropropene	11	0.50	ug/L	10	ND	114	70-130	7	30	05/07/24	
Trichloroethene (TCE)	11	0.50	ug/L	10	ND	110	70-130	7	30	05/07/24	
Trichlorofluoromethane	11	5.0	ug/L	10	ND	114	70-130	20	30	05/07/24	
Vinyl Chloride	11	0.50	ug/L	10	ND	114	70-130	20	30	05/07/24	
Surrogate: 1,2-Dichlorobenzene-d4	63			50		126	70-130			05/07/24	
Surrogate: Bromofluorobenzene	63			50		126	70-130			05/07/24	

Title 21

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- · Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- · Field tests are outside the scope of laboratory accreditation and there is no certification available for field testing.
- Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.
- · (2) Formerly known as Bis(2-Chloroisopropyl) ether.
 - Unless otherwise noted, TOC results by SM 5310C method do not include purgeable organic carbon, which is removed along with the inorganic carbon interference. The POC contribution to TOC is considered to be negligible.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Non-Reportable

Certificate of Analysis

Definitions

NR:

mg/L: Milligrams/Liter (ppm) MDL: Method Detection Limit MDA95: Min. Detected Activity Milligrams/Kilogram (ppm) Reporting Limit: DL x Dilution MPN: Most Probable Number mg/Kg: RL: CFU: μg/L: Micrograms/Liter (ppb) ND: None Detected below MRL/MDL Colony Forming Unit Micrograms/Kilogram (ppb) pCi/L: PicoCuries per Liter Absent: Less than 1 CFU/100mLs μg/Kg: RL Mult: RL Multiplier Present: 1 or more CFU/100mLs Percent %:

MCL: Maximum Contaminant Limit U: The analyte was not detected at or

above the reported sample quantitation

limit.

Please see the individual Subcontract Lab's report for applicable certifications.

The following parameters are not available for certification through CA ELAP:

Odor Diisopropyl ether (DIPE) by EPA 524.2

The following parameters are calculated values and are outside the scope of our NELAP accreditation:

Total Nitrogen Aggressive Index Trivalent Chromium

BSK is not accredited under the NELAP program for the following additional parameters:

NA

Certificate of Analysis

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

_	r	^	c	n	$\hat{}$
		┖	Э		v

State of California - ELAP 1180 State of Hawaii 4021 Los Angeles CSD 9254479 **NELAP** certified 4021-023 CA000792024-03 4021-023 State of Nevada State of Oregon - NELAP **EPA UCMR5** CA00079 State of Washington C997-24

Sacramento

State of California - ELAP 1180-S1

San Bernardino

State of California - ELAP 1180-S2 Los Angeles CSD 9254478

NELAP certified 4119-008 State of Oregon - NELAP 4119-008

Vancouver

NELAP certified WA100008-016 State of Oregon - NELAP WA100008-016

State of Washington C824-23

Sample Integrity

BSK Bottles: /Yes. No Page of Was temperature within range? Were correct containers and preservatives Yes, Yes No NA No Chemistry ≤ 6°C Micro < 8°C received for the tests requested? Info Bubbles Present VOAs (524.2/TTHM/TCP)? Yes (No) NA If samples were taken today, is there evidence No NA TB Received? (Check Method Below) Yes No NA that chilling has begun? Was a sufficient amount of sample received? Yes No Did all bottles arrive unbroken and intact? No Do samples have a hold time <72 hours? No Did all bottle labels agree with COC? No Was PM notified of discrepancies? Was sodium thiosulfate added to CN sample(s) No NA Yes PMSCIAN dt: 51104email (scan) copy until chlorine was no longer present? 250ml(A) 500ml(B) 1Liter(C) 40mlVOA(V) 125ml(D) Checks* Passed? Bacti Na₂S₂O₃ None (P)White Label Cr6 (P) Lt. Green Label/Blue Cap NH40H(NH4)2SO4 DW CI, pH > 8 Cr6 (P) Pink Label/Blue Cap F pH 9.3-9.7 NH40H(NH4)2SO4 WW Cr6 (P) Black Label/Llue Cap NH40H(NH4)2SO4 7199 pH 9.0-9.5 ***24 HOUR HOLD TIME*** HNO₃ (P) Red Label or HCI (P) Purple Cap/Lt. Blue Label H₂SO₄ (P) or (AG) Yellow Label pH < 2 NaOH (P) Green Cap/Label CI, pH >10 pH > 9 NaOH + ZnAc (P) Dissolved Oxygen 300ml (g) None (AG) 608/8031/8082, 625, 632/8321, 8151, 8270 **Bottles Received** HCI (AG)Lt. Blue Label O&G, Diesel, TCP Ascorbic, EDTA, KH2Ct (AG)Pink Label 525 Na₂SO₃ 250mL (AG)Neon Green Label 515 Na₂S₂O₃ 1 Liter (Brown P) 549 Na₂S₂O₃ (AG)^{Blue Label} 548, THM, 524 Na₂S₂O₃ (CG) Blue Label 504, 505, 547 Na₂S₂O₃ + MCAA (CG)^{Orange Label} 531 pH < 3NH₄Cl (AG)^{Purple Label} 552 EDA (P) or (AG) Brown Label DBPs HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624 Buffer pH 4 (CG) H₃PO₄ (CG)^{Salmon Label} Trizma - EPA 537.1 Light Blue Label FB Ammonia Acetate - EPA 533 Purple Label FB **Bottled Water** Clear Glass: Jar / VOA OTHER: OTHER: Preservation Check Lot# Date/Time Container Preservative Initials Split SP pH Lot # CI Lot # ✓ Indicates Blanks Received *Preservation check completed by lab performing analysis. Unperserve Bottles notest 504 __ 524.2 __ TTHM __ 537/533 __ TCP__ ✓ MS/MSD Received Method: ______ Checked by: Labeled by: Rush/Short HT Page: _____ Time: Scanned:

acknowledge that they are either the Clerk or an authorized agent to the Clerk that the Clerk agents to be responsible for payment for the www.bassescences.com/95kluablemesConditions.pdf	Shipping Method: GLS UPS WALK-IN Cooling Method: Wet Blue None ADD	Replayed for Lab by Signature and Printed Name)	Reinquished by 1996 daure and Printed Name)	S 20.00 Janua and Landa Anna Anna Anna Anna Anna Anna Anna	Ď.						15042hg paggitte 7.	/ Spring Water	# Sample Description*	Mairix Types: SW=Surface Water BW=Bottled Water GW=Ground		ited/Signature)*:	Reporting Options: Trace (J-Flag) Swamp EDD Type	Title 21	50 N. Salado Avenue, Unit 1417	Springs Water	Company/Client Name*: I emp; C Re	ASSOCIATES Up	(559) 497-2888 CA ELAP No. 1180	
125	W	Miles Sim	Company	Addre Sonnas Har	Parameter 1				\ \ \			2	Sampled* Matrix*	Water WW=	Madera Co Tulare Co	Ш	Regulatory Carbon Copies SWRCB (Drinking Water)	Project#:	Patterson	Ray Tackaberry	Report Attention*:		ELAP No. 1180]
nivides on this Chain of Cusposy, and agreed to BSX's larms and contilions for laboratory services unless contractually bound otherwise. BSK's current terms and contilions can be found at SR-FL-00.12	e ste stikaet in modifit canica bhuraes anti iristour confol in 1976.	Time Payment Received at Delivery: Date:		2									X* Comments / Station Code / WTRAX	0	Geotracker #		Regulatory Compliance EDT to California SWRCB (Drinking Water)	Phase# Task#	CA 95363	Ray Tackaberry	*Required Fields Invoice To*:	Date needed:	Turnaround Time Request Standard - 10 business days	
s contractually bound otherwise. BSK's current terms and con-	Custody Seal: Y / N Chilling Process Begun: Y / N	Amount: PIA#.					1					×	V	Ö	C					(408) 897-3023 E-mail: ray@adobesprings.com	Phone*:			AHE0057 Adobe3023
nofilons can be found at SR-FL-0012-09	se. The person signing for the Clerottompany	Check / Cash Init.		Southern						1										gs.com	Fax:		10	3023 05/01/2024